Entity

Time filter

Source Type

Pittsburgh, PA, United States

Humphries R.M.,University of California at Los Angeles | McDonnell G.,STERIS Corporation
Journal of Clinical Microbiology | Year: 2015

Inadequate flexible endoscope reprocessing has been associated with infection outbreaks, most recently caused by carbapenemresistant Enterobacteriaceae. Lapses in essential device reprocessing steps such as cleaning, disinfection/sterilization, and storage have been reported, but some outbreaks have occurred despite claimed adherence to established guidelines. Recommended changes in these guidelines include the use of sterilization instead of high-level disinfection or the use of routine microbial culturing to monitor efficacy of reprocessing. This review describes the current standards for endoscope reprocessing, associated outbreaks, and the complexities associated with both microbiological culture and sterilization approaches to mitigating the risk of infection associated with endoscopy. Copyright © 2015, American Society for Microbiology. All Rights Reserved. Source


Liu B.,Case Western Reserve University | Persons L.,Case Western Reserve University | Persons L.,STERIS Corporation | Lee L.,Case Western Reserve University | de Boer P.A.J.,Case Western Reserve University
Molecular Microbiology | Year: 2015

Escherichia coliFtsN is a bitopic membrane protein that is essential for triggering active cell constriction. A small periplasmic subdomain (EFtsN) is required and sufficient for function, but its mechanism of action is unclear. We isolated extragenic EFtsN*-suppressing mutations that restore division in cells producing otherwise non-functional variants of FtsN. These mapped to the IC domain of FtsA in the cytoplasm and to small subdomains of the FtsB and FtsL proteins in the periplasm. All FtsB and FtsL variants allowed survival without EFtsN, but many then imposed a new requirement for interaction between the cytoplasmic domain of FtsN (NFtsN) and FtsA. Alternatively, variants of FtsA, FtsB or FtsL acted synergistically to allow cell division in the complete absence of FtsN. Strikingly, moreover, substitution of a single residue in FtsB (E56) proved sufficient to rescue ΔftsN cells as well. In FtsN+ cells, EFtsN*-suppressing mutations promoted cell fission at an abnormally small cell size, and caused cell shape and integrity defects under certain conditions. This and additional evidence support a model in which FtsN acts on either side of the membrane to induce a conformational switch in both FtsA and the FtsBLQ subcomplex to de-repress septal peptidoglycan synthesis and membrane invagination. © 2014 John Wiley & Sons Ltd. Source


McDonnell G.,STERIS Ltd. | Burke P.,STERIS Corporation
Journal of Hospital Infection | Year: 2011

The Spaulding classification, originally proposed in 1957, is a widely used system for matching the disinfection and sterilization of surfaces, particularly those of re-usable medical/surgical devices, with available processes. It presents a ranking, from simple disinfection through to sterilization, that should be considered in the reprocessing of devices, based on the risks associated with their use, ranging from 'critical' (presenting a high risk), through 'semi-critical' to 'non-critical' (presenting a low risk). The different levels of disinfection are based on demonstrating antimicrobial activity against established marker micro-organisms representing a range of pathogens. Although this classification system is probably as valid today as it was in 1957, the understanding of microbiology and micro-organisms has changed. This article discusses some examples of disinfection studies with viruses, bacteria, protozoa and prions that challenge the current definitions and expectations of high-, intermediate- and low-level disinfection. In many of these examples, the test micro-organisms demonstrate atypical tolerance or resistance profiles to disinfection processes. In addition to laboratory-based studies, there is now clinical evidence for at least some of these micro-organisms that biocide resistance can lead to infection outbreaks due to unexpected disinfection failure. These reports should encourage the reader to challenge current dogma, and reconsider the expectations of disinfection and sterilization practices. © 2011 The Healthcare Infection Society. Source


Patent
STERIS Corporation | Date: 2014-09-30

The disclosed invention relates to an amperometric gas sensor for measuring the concentration of an analyte, comprising: a solid support; and a working electrode in contact with the solid support; wherein the analyte comprises a dopant which when in contact with the solid support increases the electrical conductivity of the solid support. A sterilization process employing the amperometric gas sensor is disclosed.


Patent
STERIS Corporation | Date: 2014-09-30

The disclosed invention relates to an amperometric gas sensor for measuring the concentration of an analyte, comprising: a solid support; and a working electrode in contact with the solid support; wherein the analyte comprises a dopant which when in contact with the solid support increases the electrical conductivity of the solid support. A sterilization process employing the amperometric gas sensor is disclosed.

Discover hidden collaborations