Entity

Time filter

Source Type

Toronto, Canada

Solomon S.,New York Stem Cell Foundation | Pitossi F.,CONICET | Rao M.S.,Stem Cell Therapeutics
Stem Cell Reviews and Reports | Year: 2015

The discovery of induced pluripotent stem cells (iPSCs) and concurrent development of protocols for their cell-type specific differentiation have revolutionized studies of diseases and raised the possibility that personalized medicine may be achievable. Realizing the full potential of iPSC will require addressing the challenges inherent in obtaining appropriate cells for millions of individuals while meeting the regulatory requirements of delivering therapy and keeping costs affordable. Critical to making PSC based cell therapy widely accessible is determining which mode of cell collection, storage and distribution, will work. In this manuscript we suggest that moderate sized bank where a diverse set of lines carrying different combinations of commonly present HLA alleles are banked and differentiated cells are made available to matched recipients as need dictates may be a solution. We discuss the issues related to developing such a bank and how it could be constructed and propose a bank of selected HLA phenotypes from carefully screened healthy individuals as a solution to delivering personalized medicine. © 2014, The Author(s). Source


Patent
Stem Cell Therapeutics | Date: 2012-06-28

The present invention provides a method of increasing neural stem cell numbers or neurogenesis by using prolactin. The method can be practiced in vivo to obtain more neural stem cells in situ, which can in turn produce more neurons or glial cells to compensate for lost or dysfunctional neural cells. The method can also be practiced in vitro to produce a large number of neural stem cells in culture. The cultured stem cells can be used, for example, for transplantation treatment of patients or animals suffering from neurodegenerative diseases or conditions. In addition, since neural stem cells are a source for olfactory neurons, the present invention also provides methods of increasing olfactory neurons and enhancing olfactory functions.


Patent
Stem Cell Therapeutics | Date: 2012-03-19

This invention relates to methods of producing oligodendrocytes from multipotent neural stem cells by using at least one oligodendrocyte promoting factor, particularly granulocyte-macrophage colony stimulating factor, granulocyte colony stimulating factor, interleukin 3 or interleukin 5. The neural stem cells may optionally be expanded prior to being subjected to the oligodendrocyte promoting factor.


The present invention provides a method of increasing neural stem cell numbers or neurogenesis by using a pheromone, a luteinizing hormone (LH) and/or a human chorionic gonadotrophin (hCG). The method can be practiced in vivo to obtain more neural stem cells in situ, which can in turn produce more neurons or glial cells to compensate for lost or dysfunctional neural cells. The method can also be practiced in vitro to produce a large number of neural stem cells in culture. The cultured stem cells can be used, for example, for transplantation treatment of patients or animals suffering from or suspected of having neurodegenerative diseases or conditions.


Effective dosing regimens for neural stem cell proliferating and differentiating agents, kits comprising effective dosing regimens for neural stem cell proliferating and differentiating agents, and uses thereof are provided herein. Such kits and methods can be utilized acutely or chronically to treat a neurodegenerative disease or condition. Furthermore, the compositions and methods can be used continuously or intermittently in various dosing regimens.

Discover hidden collaborations