Time filter

Source Type

Chatterjee R.,Stem Cell Research and Application Unit | Chattopadhyay S.,Stem Cell Research and Application Unit | Law S.,Stem Cell Research and Application Unit
Leukemia Research | Year: 2016

Downregulation of p53 is associated with most of the neoplasms, however it claims additional significance for hematopoietic malignancy due to its supplementary role during hematopoiesis. Apart from the classical role as tumor suppressor, p53 during steady state hematopoiesis is associated with the maintenance of quiescent cell population in bone marrow by upregulating necdin (Ndn) and Gfi-1. We felt, it is necessary to delineate its attribution towards malignant conversion of hematopoietic system during leukemogenesis from all the possible angles. The present study deals with the characterization of N-N' Ethylnitrosourea (ENU) induced mouse model of leukemia by peripheral blood hemogram, bone marrow cytology, histology, cytochemical staining (MPO) and scanning electron microscopic study. We further investigated the alteration of conventional and hematopoiesis specific p53 pathways by flowcytometric expressional analysis of ATM, Chk-2, p53, p21, Ndn, Gfi-1 and Tie-2. The disruption of classical p53 pathway was observed in leukemic hematopoietic stem/progenitor population which involved downregulation of ATM, Chk-2, p53 and p21. Moreover, the expressional decline of Ndn and Gfi-1 hinted towards the mechanism of hindrance of hematopoietic quiescency in leukemic bone marrow. Increased expression of Tie-2 due to reverse correlation with p53 was found to be responsible for pathological angiogenesis in bone marrow together with increased blast burden in bone marrow during leukemia. The study presents the mechanistic scenario of the alteration of both classical as well as hematopoiesis specific p53 pathways in HSPC compartment triggering leukemic pathophysiology. © 2016 Elsevier Ltd. Source

Sanyal S.,Stem Cell Research and Application Unit | Das P.,Stem Cell Research and Application Unit | Law S.,Stem Cell Research and Application Unit
Cell Biology and Toxicology | Year: 2016

Pesticide exposure can occur directly or indirectly in an occupational setting or otherwise. The health hazards of pesticides have long been studied; however, little is known about the ocular insult of these potent chemicals. In this study, we examined the consequences of long-term pesticide exposure on the ocular tissue in animal model with special focus on the cornea. Swiss Albino mice were sacrificed to obtain the eye globes and various cytological, cytotoxic and histological evaluations, in vitro growth kinetic studies and flow cytometric analyses of select cytokeratins were performed to determine the structural and functional damage due to pesticide exposure. Our study revealed the detrimental impact of this xenobiotic insult by cataloguing the damage to each layer of the cornea wherein it was discovered that all the functional layers as well as the membranes were compromised. We hope that our investigation will pave the way for future studies in this oft overlooked area of affront caused by pesticide exposure to the ocular surface. © 2016 Springer Science+Business Media Dordrecht Source

Chattopadhyay S.,Stem Cell Research and Application Unit | Chaklader M.,Stem Cell Research and Application Unit | Chaklader M.,Prometheus Research | Chatterjee R.,Stem Cell Research and Application Unit | And 2 more authors.
Experimental Cell Research | Year: 2016

Soft tissue sarcomas are relatively rare, unusual, anatomically diverse group of malignancies. According to the recent literature and medical bulletins, tumor growth and aggressiveness immensely relies on its anatomical locations. However, it is unclear whether the cranio-caudal anatomical axis of the mammalian body can influence sarcoma development and the underlying molecular mechanisms are not yet deciphered. Here, we investigated the growth pattern of solid sarcoma implanted into the murine cranial and caudal anatomical locations and tried to explore the location specific expression pattern of crucial mammalian mitotic regulators such as Aurora kinase A, Histone H3 and c-Myc in the cranio-caudally originated solid tumors. In addition, the influence of local tumor microenvironment on regional sarcoma growth was also taken into consideration. We found that solid sarcoma developed differentially when implanted into two different anatomical locations and most notably, enhanced tumor growth was observed in case of cranially implanted sarcoma than the caudal sarcoma. Interestingly, Aurora kinase A and c-Myc expression and histone H3 phosphorylation level were comparatively higher in the cranial tumor than the caudal. In addition, variation of tumor stroma in a location specific manner also facilitated tumor growth. Cranial sarcoma microenvironment was well vascularized than the caudal one and consequently, a significantly higher microvessel density count was observed which was parallel with low hypoxic response with sign of local tumor inflammation in this region. Taken together, our findings suggest that differential gradient of mitotic regulators together with varied angiogenic response and local tumor microenvironment largely controls solid sarcoma growth along the cranio-caudal anatomical axis. © 2015 Elsevier Inc. Source

Chaklader M.,Stem Cell Research and Application Unit | Das P.,Stem Cell Research and Application Unit | Pereira J.A.,Stem Cell Research and Application Unit | Chaudhuri S.,Kalyani University | Law S.,Stem Cell Research and Application Unit
Arhiv za Higijenu Rada i Toksikologiju | Year: 2012

The mechanistic interplay between pesticide exposure and development of marrow aplasia is not yet well established but there are indices that chronic pesticide exposure in some instances causes marrow aplasia like haematopoietic degenerative condition in human beings. Canonical Hedgehog (Hh) signalling has multiple roles in a wide range of developmental processes, including haematopoiesis. The present study was designed to explore the status of four important components of the canonical Hedgehog signalling cascade, the Sonic Hedgehog (Shh), Ptch1, Smo, and Gli1, in a mouse model of chronic pesticide-induced bone marrow aplasia. We used 5 % aqueous mixture of pesticides (chlorpyriphos, prophenophos, cypermethrin, alpha-methrin, and hexaconazole) for inhalation and dermal exposure of 6 hours per day and 5 days a week up to 90 days. Murine bone marrow aplasia related to chronic pesticide treatment was confirmed primarily by haemogram, bone marrow cellularity, short term bone marrow explant culture for cellular kinetics, bone marrow smear, and flow cytometric Lin-Sca-1+C-kit+ extracellular receptor expression pattern. Later, components of hedgehog signalling were analysed in the bone marrow of both control and pesticide-treated aplastic groups of animals. The results depicted pancytopenic feature of peripheral blood, developmental anomaly of neutrophils, depression of primitive stem and progenitor population along with Shh, Ptch1, Smo and Gli1 expression in aplasia group. This investigation suggests that pesticide-induced downregulation of two critically important proteins - Ptch1 and Gli1 - inside the haematopoietic stem and progenitor cell population impairs haematopoietic homeostasis and regeneration mechanism in vivo concurrent with bone marrow aplasia. Source

Chaklader M.,Stem Cell Research and Application Unit | Pan A.,Stem Cell Research and Application Unit | Law A.,Stem Cell Research and Application Unit | Chattopadhayay S.,Stem Cell Research and Application Unit | And 2 more authors.
Molecular and Cellular Biochemistry | Year: 2013

Different forms of sarcoma (solid or ascitic) often pose a critical medical situation for pediatric or adolescent group of patients. To date, predisposed genetic anomalies and related changes in protein expression are thought to be responsible for sarcoma development. However, in spite of genetic abnormality, role of tumor microenvironment is also indispensable for the evolving neoplasm. In our present study, we characterized the deferentially remodeled microenvironment in solid and ascitic tumors by sequential immunohistochemistry and flowcytometric analysis of E-cdaherin, N-cadherin, vimentin, and cytokeratin along with angiogenesis and metastasis. In addition, we considered flowcytometric apoptosis and CD133 positive cancer stem cell analysis. Comparative hemogram was also considered as a part. Our investigation revealed that both types of tumor promoted neovascularization over time with sign of local inflammation. Invasion of neighboring skeletal muscle by solid sarcoma was more frequent than its ascitic counterpart. In contrary, rapid and earlier cadherin switching (E-cadherin to N-cadherin) in ascitic sarcoma made them more aggressive than that of solid sarcoma and helped to early metastasize distant tissue like liver through the hematogenous route. Differential cadherin switching and infidelity of cytokeratin expression in Vimentin positive sarcoma also influenced the behavior of ascitic CD133+ cancer initiating cell pool with respect to CD133+ cells housed in solid sarcoma. Therefore our study concludes that differential cadherin switching program and infidelity of intermediate filaments in part, sharply discriminate the severity and metastatic potentiality of either type of sarcoma accompanying with CD133+ cellular repertoire. Besides, tumor phenotype-based dichotomous cadherin switching program could be exploited as a future drug target to manage decompensated malignant ascitic and solid sarcoma. © 2013 Springer Science+Business Media New York. Source

Discover hidden collaborations