Time filter

Source Type

Suga M.,National Institutes of Biomedical Innovation | Suga M.,Stem Cell Evaluation Technology Research Association | Kii H.,Stem Cell Evaluation Technology Research Association | Kii H.,Nikon Corporation | And 6 more authors.
Stem Cells Translational Medicine | Year: 2015

Cell growth is an important criterion for determining healthy cell conditions. When somatic cells or cancer cells are dissociated into single cells for passaging, the cell numbers can be counted at each passage, providing information on cell growth as an indicator of the health conditions of these cells. In the case of human pluripotent stem cells (hPSCs), because the cells are usually dissociated into cell clumps of ∼50–100 cells for passaging, cell counting is time-consuming. In the present study, using a time-lapse imaging system, we developed a method to determine the growth of hPSCs from nonlabeled live cell phase-contrast images without damaging these cells. Next, the hPSC colony areas and number of nuclei were determined and used to derive equations to calculate the cell number in hPSC colonies, which were assessed on time-lapse images acquired using a culture observation system. The relationships between the colony areas and nuclei numbers were linear, although the equation coefficients were dependent on the cell line used, colony size, colony morphology, and culture conditions. When the culture conditions became improper, the change in cell growth conditions could be detected by analysis of the phase-contrast images. This method provided real-time information on colony growth and cell growth rates without using treatments that can damage cells and could be useful for basic research on hPSCs and cell processing for hPSC-based therapy. © 2015 AlphaMed Press.

Loading Stem Cell Evaluation Technology Research Association collaborators
Loading Stem Cell Evaluation Technology Research Association collaborators