Time filter

Source Type

Kilpatrick D.L.,University of Massachusetts Medical School | Wang W.,Stem Cell and Regenerative Medicine International | Gronostajski R.,State University of New York at Buffalo | Litwack E.D.,University of Maryland, Baltimore
Cerebellum | Year: 2012

Granule neurons have a central role in cerebellar function via their synaptic interactions with other neuronal cell types both within and outside this structure. Establishment of these synaptic connections and its control is therefore essential to their function. Both intrinsic as well as environmental mechanisms are required for neuronal development and formation of neuronal circuits, and a key but poorly understood question is how these various events are coordinated and integrated in maturing neurons. In this review, we summarize recent work on the role of the Nuclear Factor I family in the transcriptional programming of cerebellar granule neuron maturation and synapse formation. In particular, we describe (1) the involvement of this family of factors in key developmental steps occurring throughout postmitotic granule neuron development, including dendrite and synapse formation and synaptic receptor expression, and (2) the mediation of these actions by critical downstream gene targets that control cell-cell interactions. These findings illustrate how Nuclear Factor I proteins and their regulons function as a "bridge" between cell-intrinsic and cell-extrinsic interactions to control multiple phases of granule neuron development. © 2010 Springer Science+Business Media, LLC. Source

Rhee Y.-H.,Hanyang University | Ko J.-Y.,Hanyang University | Chang M.-Y.,Harvard University | Yi S.-H.,Hanyang University | And 16 more authors.
Journal of Clinical Investigation | Year: 2011

Parkinson disease (PD) involves the selective loss of midbrain dopamine (mDA) neurons and is a possible target disease for stem cell-based therapy. Human induced pluripotent stem cells (hiPSCs) are a potentially unlimited source of patient-specific cells for transplantation. However, it is critical to evaluate the safety of hiPSCs generated by different reprogramming methods. Here, we compared multiple hiPSC lines derived by virus- and protein-based reprogramming to human ES cells (hESCs). Neuronal precursor cells (NPCs) and dopamine (DA) neurons delivered from lentivirus-based hiPSCs exhibited residual expression of exogenous reprogramming genes, but those cells derived from retrovirus- and protein-based hiPSCs did not. Furthermore, NPCs derived from virus-based hiPSCs exhibited early senescence and apoptotic cell death during passaging, which was preceded by abrupt induction of p53. In contrast, NPCs derived from hESCs and protein-based hiPSCs were highly expandable without senescence. DA neurons derived from protein-based hiPSCs exhibited gene expression, physiological, and electrophysiological properties similar to those of mDA neurons. Transplantation of these cells into rats with striatal lesions, a model of PD, significantly rescued motor deficits. These data support the clinical potential of protein-based hiPSCs for personalized cell therapy of PD. Copyright © 2011, The American Society for Clinical Investigation. Source

Lu S.-J.,Stem Cell and Regenerative Medicine International | Kimbrel E.A.,Stem Cell and Regenerative Medicine International
Stem Cells International | Year: 2011

The ability of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to divide indefinitely without losing pluripotency and to theoretically differentiate into any cell type in the body makes them highly attractive cell sources for large scale regenerative medicine purposes. The current use of adult stem cell-derived products in hematologic intervention sets an important precedent and provides a guide for developing hESC/iPSC based therapies for the blood system. In this review, we highlight biological functions of mature cells of the blood, clinical conditions requiring the transfusion or stimulation of these cells, and the potential for hESC/iPSC-derivatives to serve as functional replacements. Many researchers have already been able to differentiate hESCs and/or iPSCs into specific mature blood cell types. For example, hESC-derived red blood cells and platelets are functional in tasks such as oxygen delivery and blood clotting, respectively and may be able to serve as substitutes for their donor-derived counterparts in emergencies. hESC-derived dendritic cells are functional in antigen-presentation and may be used as off-the-shelf vaccine therapies to stimulate antigen-specific immune responses against cancer cells. However, in vitro differentiation systems used to generate these cells will need further optimization before hESC/iPSC-derived blood components can be used clinically. Copyright © 2011 Erin A. Kimbrel and Shi-Jiang Lu. Source

Honig G.R.,University of Illinois at Chicago | Lu S.-J.,Stem Cell and Regenerative Medicine International | Feng Q.,Stem Cell and Regenerative Medicine International | Vida L.N.,University of Illinois at Chicago | And 3 more authors.
Hemoglobin | Year: 2010

Under culture conditions that promote hematopoietic differentiation, human embryonic stem cells (huESC) give rise to primitive erythroid cells that closely resemble the nucleated erythrocytes of early-stage human embryos. The globin chain distribution of these cells is similar to that seen during the embryonic and fetal stages of development. Here we show that huESC-derived erythroid cells produce substantial quantities of homotetrameric hemoglobin (Hb) composed exclusively of γ-globin-containing subunits. The globin synthesis of these erythroid cells was also significantly unbalanced, with a substantial decrease of α-like globin chain synthesis in relation to that of their β-like globins, a pattern characteristically associated with α-thalassemia (α-thal). This pattern of unbalanced globin synthesis appears to be an inherent feature of human erythroid cells that synthesize predominantly embryonic-stage globins. © Informa UK, Ltd. Source

Lu S.-J.,Stem Cell and Regenerative Medicine International | Lu S.-J.,CHA Medical University | Li F.,Stem Cell and Regenerative Medicine International | Li F.,CHA Medical University | And 14 more authors.
Cell Research | Year: 2011

Platelets play an essential role in hemostasis and atherothrombosis. Owing to their short storage time, there is constant demand for this life-saving blood component. In this study, we report that it is feasible to generate functional megakaryocytes and platelets from human embryonic stem cells (hESCs) on a large scale. Differential-interference contrast and electron microscopy analyses showed that ultrastructural and morphological features of hESC-derived platelets were indistinguishable from those of normal blood platelets. In functional assays, hESC-derived platelets responded to thrombin stimulation, formed microaggregates, and facilitated clot formation/retraction in vitro. Live cell microscopy demonstrated that hESC-platelets formed lamellipodia and filopodia in response to thrombin activation, and tethered to each other as observed in normal blood. Using real-time intravital imaging with high-speed video microscopy, we have also shown that hESC-derived platelets contribute to developing thrombi at sites of laser-induced vascular injury in mice, providing the first evidence for in vivo functionality of hESC-derived platelets. These results represent an important step toward generating an unlimited supply of platelets for transfusion. Since platelets contain no genetic material, they are ideal candidates for early clinical translation involving human pluripotent stem cells. © 2011 IBCB, SIBS, CAS All rights reserved. Source

Discover hidden collaborations