Stem Cell and Drug Discovery Institute

Kyoto, Japan

Stem Cell and Drug Discovery Institute

Kyoto, Japan
Time filter
Source Type

Otsuji T.G.,Stem Cell and Drug Discovery Institute | Otsuji T.G.,Kyoto University | Kurose Y.,Stem Cell and Drug Discovery Institute | Suemori H.,Kyoto University | And 3 more authors.
PLoS ONE | Year: 2012

Cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) are functionally heterogeneous, display insufficient biological efficacy and generally possess the electrophysiological properties seen in fetal CMs. However, a homogenous population of hESC/hiPSC-CMs, with properties similar to those of adult human ventricular cells, is required for use in drug cardiotoxicity screening. Unfortunately, despite the requirement for the functional characteristics of post-mitotic beating cell aggregates to mimic the behavior of mature cardiomyocytes in vitro, few technological improvements have been made in this field to date. Previously, we showed that culturing hESC-CMs under low-adhesion conditions with cyclic replating confers continuous contractility on the cells, leading to a functional increase in cardiac gene expression and electrophysiological properties over time. The current study reveals that culturing hESC/hiPSC-CMs under non-adhesive culture conditions enhances the electrophysiological properties of the CMs through an increase in the acetylation of histone H3 lysine residues, as confirmed by western blot analyses. Histone H3 acetylation was induced chemically by treating primitive hESC/hiPSC-CMs with Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, resulting in an immediate increase in global cardiac gene expression. In functional analyses using multi-electrode array (MEA) recordings, TSA-treated hESC/hiPSC-CM colonies showed appropriate responses to particular concentrations of known potassium ion channel inhibitors. Thus, the combination of a cell-autonomous functional increase in response to non-adhesive culture and short-term TSA treatment of hESC/hiPSC-CM colonies cultured on MEA electrodes will help to make cardiac toxicity tests more accurate and reproducible via genome-wide chromatin activation. © 2012 Otsuji et al.

Fujiwara M.,Kyoto University | Yan P.,Kyoto University | Yan P.,Dalian Municipal Central Hospital | Otsuji T.G.,Stem Cell and Drug Discovery Institute | And 19 more authors.
PLoS ONE | Year: 2011

Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1+/CXCR4+/VE-cadherin- (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs. © 2011 Fujiwara et al.

Ishii T.,Kyoto University | Yasuchika K.,Kyoto University | Fukumitsu K.,Kyoto University | Kawamoto T.,Stem Cell and Drug Discovery Institute | And 8 more authors.
Cell and Tissue Research | Year: 2010

Hepatocytes derived from human embryonic stem cells (hESCs) are an attractive cell source for regenerative medicine. We previously reported the differentiation of hESCs into alpha-fetoprotein (AFP)-producing endodermal cells by using extracellular matrix and growth factors. We also reported the establishment of the MLSgt20 cell line, which was derived from mesenchymal cells residing in murine fetal livers and accelerated the hepatic maturation of both murine hepatic progenitor cells and murine ESCs. In this study, hESC-derived AFP-producing cells were isolated by using a flow cytometer and co-cultured with MLSgt20 cells. The co-cultured hESC-derived AFP-producing cells had the immunocytological characteristics of hepatocytes, expressed mature hepatocyte markers (as indicated by reverse transcription and the polymerase chain reaction), and displayed higher hepatocyte functions including ammonia removal, cytochrome P450 3A4/7 activity, and the ability to produce and store glycogen. However, the MLSgt20 cells did not directly cause undifferentiated hESCs to mature into hepatocyte-like cells. The co-culture method was thus successfully shown to induce the differentiation of hESC-derived endodermal cells into functional hepatocyte-like cells. © 2009 Springer-Verlag.

Tatsumi R.,Stem Cell and Drug Discovery Institute | Suzuki Y.,Stem Cell and Drug Discovery Institute | Sumi T.,Niigata University | Sone M.,Kyoto University | And 2 more authors.
Cell Transplantation | Year: 2011

Endothelial cells derived from human embryonic stem cells (hESC-ECs) hold much promise as a valuable tool for basic vascular research and for medical application such as cell transplantation or regenerative medicine. Here we have developed an efficient approach for the production of hESC-ECs. Using a differentiation method consisting of a stepwise combination of treatment with glycogen synthase kinase-3β (GSK-3β) inhibitor and culturing in vascular endothelial growth factor (VEGF)-supplemented medium, hESC-ECs are induced in 5 days with about 20% efficiency. These cells express vascular endothelial cadherin (VEcadherin), VEGF receptor-2 (VEGFR-2), CD34, and platelet endothelial cell adhesion molecule-1 (PECAM-1). These hESC-ECs can then be isolated with 95% purity using a magnetic sorting system, and expanded to more than 100-fold within a month. The hESC-ECs thus produced exhibit the endothelial morphological characteristics and specific functions such as capillary tube formation and acetylated low-density lipoprotein uptake. We propose that our methodology is useful for efficient and large-scale production of hESC-ECs. © 2011 Cognizant Comm. Corp.

Wada T.,Stem Cell and Drug Discovery Institute | Goparaju S.K.,Kyoto University | Tooi N.,Kyoto University | Inoue H.,Kyoto University | And 4 more authors.
Stem Cells Translational Medicine | Year: 2012

The generation of amyotrophic lateral sclerosis (ALS) disease models is an important subject for investigating disease mechanisms and pharmaceutical applications. In transgenic mice, expression of a mutant form of superoxide dismutase 1 (SOD1) can lead to the development of ALS that closely mimics the familial type of ALS (FALS). Although SOD1 mutant mice show phenotypes similar to FALS, dissimilar drug responses and size differences limit their usefulness to study the disease mechanism(s) and identify potential therapeutic compounds. Development of an in vitro model system for ALS is expected to help in obtaining novel insights into disease mechanisms and discovery of therapeutics. We report the establishment of an in vitro FALS model from human embryonic stem cells overexpressing either a wild-type (WT) or a mutant SOD1 (G93A) gene and the evaluation of the phenotypes and survival of the spinal motor neurons (sMNs), which are the neurons affected in ALS patients. The in vitro FALS model that we developed mimics the in vivo human ALS disease in terms of the following: (a) selective degeneration of sMNs expressing the G93A SOD1 but not those expressing the WT gene; (b) susceptibility of G93A SOD1-derived sMNs to form ubiquitinated inclusions; (c) astrocyte-derived factor(s) in the selective degeneration of G93A SOD1 sMNs; and (d) cell-autonomous, as well as non-cellautonomous, dependent sMN degeneration. Thus, this model is expected to help unravel the disease mechanisms involved in the development of FALS and also lead to potential drug discoveries based on the prevention of neurodegeneration. © AlphaMed Press.

Homma K.,Kyoto University | Homma K.,Keio University | Sone M.,Kyoto University | Taura D.,Kyoto University | And 12 more authors.
Atherosclerosis | Year: 2010

Objective: We previously succeeded in inducing and isolating vascular endothelial cells (ECs) from both human embryonic stem (ES) and induced pluripotent stem (iPS) cells. Here, we compared the functionality of human adult ECs (HAECs), human ES-derived ECs (ESECs) and human iPS-derived ECs (iPSECs). Methods and results: We compared the cell proliferative potential, potential for migration, and tolerance to oxidative stress. ESECs were significantly superior to HAECs in all of these cell functions. The cell functions of iPSECs were comparable to those of ESECSs and also superior to HAECs. We then analyzed the gene expressions of HAECs, ESECs and iPSECs, and observed that the expression level of Sirt1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, is higher in ESECs and iPSECs than in HAECs. The inhibition of Sirt1 with a Sirt1-specific inhibitor and siRNA antagonized these differences between the three types of cells. Conclusions: Sirt1 plays a key role in the high cellular function of ESECs and iPSECs. Although further in vivo investigations are required, this study initially demonstrated the potential of ESECs and iPSECs as the cell source for regenerative medicine, and also showed the potential of ES cells as a useful tool for elucidating the molecular mechanism of cell aging. © 2010.

Sakurai K.,Kyoto University | Sakurai K.,Stem Cell and Drug Discovery Institute | Shimoji M.,Stem Cell and Drug Discovery Institute | Tahimic C.G.T.,Stem Cell and Drug Discovery Institute | And 8 more authors.
Nucleic Acids Research | Year: 2010

Random integration is one of the more straightforward methods to introduce a transgene into human embryonic stem (ES) cells. However, random integration may result in transgene silencing and altered cell phenotype due to insertional mutagenesis in undefined gene regions. Moreover, reliability of data may be compromised by differences in transgene integration sites when comparing multiple transgenic cell lines. To address these issues, we developed a genetic manipulation strategy based on homologous recombination and Cre recombinase-mediated site-specific integration. First, we performed gene targeting of the hypoxanthine phosphoribosyltransferase 1 (HPRT) locus of the human ES cell line KhES-1. Next, a gene-replacement system was created so that a circular vector specifically integrates into the targeted HPRT locus via Cre recombinase activity. We demonstrate the application of this strategy through the creation of a tetracycline-inducible reporter system at the HPRT locus. We show that reporter gene expression was responsive to doxycycline and that the resulting transgenic human ES cells retain their self-renewal capacity and pluripotency. © The Author(s) 2010. Published by Oxford University Press.

Aizawa E.,Saitama University | Hirabayashi Y.,Saitama University | Iwanaga Y.,Saitama University | Suzuki K.,Saitama University | And 10 more authors.
Molecular Therapy | Year: 2012

Low efficiencies of gene targeting via homologous recombination (HR) have limited basic research and applications using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Here, we show highly and equally efficient gene knockout and knock-in at both transcriptionally active (HPRT1, KU80, LIG1, LIG3) and inactive (HB9) loci in these cells using high-capacity helper-dependent adenoviral vectors (HDAdVs). Without the necessity of introducing artificial DNA double-strand breaks, 7-81% of drug-resistant colonies were gene-targeted by accurate HR, which were not accompanied with additional ectopic integrations. Even at the motor neuron-specific HB9 locus, the enhanced green fluorescent protein (EGFP) gene was accurately knocked in in 23-57% of drug-resistant colonies. In these clones, induced differentiation into the HB9-positive motor neuron correlated with EGFP expression. Furthermore, HDAdV infection had no detectable adverse effects on the undifferentiated state and pluripotency of hESCs and hiPSCs. These results suggest that HDAdV is one of the best methods for efficient and accurate gene targeting in hESCs and hiPSCs and might be especially useful for therapeutic applications. © The American Society of Gene & Cell Therapy.

Otsuji T.G.,Stem Cell and Drug Discovery Institute | Minami I.,Stem Cell and Drug Discovery Institute | Kurose Y.,Stem Cell and Drug Discovery Institute | Yamauchi K.,Kyoto University | And 3 more authors.
Stem Cell Research | Year: 2010

The field of drug testing currently needs a new integrated assay system, as accurate as systems using native tissues, that will allow us to predict arrhythmia risks of candidate drugs and the relationship between genetic mutations and acquired electrophysiological phenotypes. This could be accomplished by combining the microelectrode array (MEA) system with cardiomyocytes (CMs) derived from human embryonic stem cells (hESC) and induced pluripotential stem cells. CMs have been successfully induced from both types, but their maturation process is not systematically controlled; this results in loss of beating potency and insufficient ion channel function. We generated a transgenic hESC line that facilitates maintenance of hESC-CM clusters every 2 weeks by expressing GFP driven by a cardiac-specific αMHC promoter, thereby producing a compact pacemaker lineage within a ventricular population over a year. Further analyses, including quantitative RT-PCR, patch-clamp, and MEA-mediated QT tests, demonstrated that replating culturing continuously enhanced gene expression, ionic current amplitudes, and resistance to K+ channel blockades in hESC-CMs. Moreover, temporal three-dimensional (3D) culturing accelerated maturation by restoring the global gene repressive status established in the adhesive status. Replating/3D culturing thus produces hESC-CMs that act as functional syncytia suitable for use in regenerative medicine and accurate drug tests. © 2010 Elsevier B.V. All rights reserved.

Loading Stem Cell and Drug Discovery Institute collaborators
Loading Stem Cell and Drug Discovery Institute collaborators