Entity

Time filter

Source Type

Stellenbosch, South Africa

Stellenbosch University is a leading public research university situated in the town of Stellenbosch, South Africa. Other nearby universities are the University of Cape Town and University of the Western Cape.Stellenbosch University designed and manufactured Africa's first microsatellite, SUNSAT, launched in 1999.Stellenbosch University was the first African university to sign the Berlin Declaration on Open Access to Knowledge in the science and Humanities.The students of Stellenbosch University are nicknamed Maties. Some claim the term arises from their maroon rugby colours: a tamatie is the Afrikaans translation for tomato. It is more likely to come from the Afrikaans colloquialism maat originally used diminutively by the students of the University of Cape Town's precursor, the South African College. Wikipedia.


Myburgh K.H.,Stellenbosch University
Sports Medicine | Year: 2014

Supplement use among athletes is widespread, including non-traditional and biological compounds. Despite increasing research, a comprehensive and critical review on polyphenol supplementation and exercise is still lacking. This review is relevant for researchers directly involved in the topic, as well as those with a broad interest in athletic performance enhancement and sports nutrition. The purpose of this review is to present background information on groups of polyphenols and their derivatives because their differing chemical structures influence mechanisms of action; to discuss the potential of plant, fruit and vegetable-based biological supplements, high in polyphenol content, to affect exercise performance and biomarkers of oxidative stress and exercise-induced muscle damage; and to critically discuss the exercise studies and biomarkers used. Subjects in the studies reviewed were either sedentary, healthy individuals, or active, recreationally trained or well-trained athletes. Polyphenol supplementation in exercise studies included mainly extracts (multicomponent or purified), juices, infusions or an increased intake of polyphenol-rich foods. This review includes details of supplement doses and exercise test protocols. Many studies considered only the performance or one or two selected biomarkers of antioxidant capacity instead of a comprehensive choice of biomarkers to assess damage to lipids or proteins. Evidence is insufficient to make recommendations for or against the use of polyphenol supplementation (neither specific polyphenols nor specific doses) for either recreational, competitive or elite athletes. Polyphenols have multiple biological effects, and future exercise studies must be designed appropriately and specifically to determine physiological interactions between exercise and the selected supplement, rather than considering performance alone. © The Author(s) 2014.


Manley M.,Stellenbosch University
Chemical Society Reviews | Year: 2014

Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as chemical images providing identification as well as localisation of chemical compounds in non-homogenous samples. © The Royal Society of Chemistry 2014.


Pauw A.,Stellenbosch University
Trends in Ecology and Evolution | Year: 2013

The question of why there are so many plant species needs two kinds of answer: an explanation for the origin of plant species, and an explanation for how they can coexist. Pollinators are often implicated in the origin of plant species because adaptation to different modes of pollination can drive divergence in floral traits and bring about reproductive isolation. However, very few studies have attempted to answer the next question: 'Can plant species that differ only in their mode of pollination coexist?' Fragmentary evidence supports the idea that intraspecific competition for pollination resources can limit population growth rate, thus allowing the coexistence of species that use different pollinators, or the same pollinators at different times. © 2012 Elsevier Ltd.


Newman E.,Stellenbosch University
Proceedings. Biological sciences / The Royal Society | Year: 2012

Although the tremendous variability in floral colour among angiosperms is often attributed to divergent selection by pollinators, it is usually difficult to preclude the possibility that floral colour shifts were driven by non-pollinator processes. Here, we examine the adaptive significance of flower colour in Disa ferruginea, a non-rewarding orchid that is thought to attract its butterfly pollinator by mimicking the flowers of sympatric nectar-producing species. Disa ferruginea has red flowers in the western part of its range and orange flowers in the eastern part--a colour shift that we hypothesized to be the outcome of selection for resemblance to different local nectar-producing plants. Using reciprocal translocations of red and orange phenotypes as well as arrays of artificial flowers, we found that the butterfly Aeropetes tulbaghia, the only pollinator of the orchid, preferred both the red phenotype and red artificial flowers in the west where its main nectar plant also has red flowers, and both the orange phenotype and orange artificial flowers in the east, where its main nectar plant has orange flowers. This phenotype by environment interaction demonstrates that the flower colour shift in D. ferruginea is adaptive and driven by local colour preference in its pollinator.


Raubenheimer H.G.,Stellenbosch University
Angewandte Chemie - International Edition | Year: 2012

Striking gold: Rather simple aryl substituents are required to convert acyclic diaminocarbenes (ADCs) into useful pseudo-bidentate ligands for monomeric gold(I), which can enantioselectively catalyze a tandem acetylization/cycloisomerization reaction. Tf=trifluoromethanesulfonyl. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Discover hidden collaborations