Stazione Zoologica Anton Dohrn

Naples, Italy

Stazione Zoologica Anton Dohrn

Naples, Italy

The Stazione Zoologica Anton Dohrn is a research institute in Naples, Italy, devoted to basic research in biology. Research is largely interdisciplinary involving the fields of evolution, biochemistry, molecular biology, neurobiology, cell biology, biological oceanography, marine botany, molecular plant biology, benthic ecology, and ecophysiology.Founded in 1872 as a private concern by Anton Dohrn, in 1982 the Stazione Zoologica came under the supervision and control of the Ministero dell'Università e della Ricerca Scientifica e Tecnologica as a National Institute. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: INFRADEV-2-2015 | Award Amount: 975.52K | Year: 2015

EMBRC is a distributed infrastructure of marine biology and ecology, encompassing aquaculture and biotechnology, exploiting the latest omics, analytical and imaging technologies, and providing on site and remote scientific and technical services to the scientific community of the public and private sector. EMBRC successfully completed a preparatory phase in early in 2014 with the production of a business plan and a memorandum of understanding (MoU) signed by 9 countries. A host for its headquarters has been chosen and and an ERIC application is in preparation. Since only institutions from 5 MoU signatory countries went through the preparatory phase, the present proposal has as objectives: 1) to harmonize the access mechanism to the operational EMBRC-ERIC across all the partners, putting all the practical tools in place, including host contracts and single point online access platform, to enable EMBRC-ERIC to commence its access program; 2) to put in place practical guidelines towards the full implementation of the new European and international legislation and commitments on access and fair benefit sharing of the use of marine biological resources, thus providing clarity to future users of EMBRC-ERIC about their legal rights over obtained biological resources, and positioning itself globally as a broker between users and the supplying countries ; 3) to focus the smart specialization of the regions onto the opportunities marine biological resources offer for blue-biotech development and innovation, thus demonstrating the member states that EMBRC is a tool towards economic development of their maritime regions, and enticing them to sign the EMBRC-ERIC, and prioritize its sustained support, particularly from regions which are now underrepresented in EMBRC (Black and Baltic Seas). These activities will ensure that the beneficiary research communities can exploit the results obtained at EMBRC-ERIC facility from the start with the highest efficiency.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 2.85M | Year: 2016

MarPipe is a consortium of 11 partners (IBP-CNR, SZN, UiT, UNIABDN, GEOMAR, KULeuven, UCC, eCOAST, MEDINA, MicroDish, Italbiotec) based in 8 countries (I, N, UK, D, B, IRL, E, NL), including 3 from the non-academic sector. We will train 11 ESRs in marine drug-discovery, providing these researchers with unique skills toward becoming world leaders in this research field and to advance their careers in academia or industry. MarPipe PhDs will be trained in a programme including training-by-research, joint courses of technical, scientific and transferrable skills, active participation to public scientific events, and an intense inter-sectoral networking exchange plan. Marine organisms have the capacity to produce a variety of biologically potent natural products, including antibiotic and anticancer compounds. MarPipe aims at further development of antimicrobial and anticancer lead compounds originating from a previous EU project (PharmaSea), and will also explore the bioactivity of deep-sea samples (5000m) collected during the recent Eurofleet-2 project in the sub-Antarctic. The PhD students will thus be involved in all phases of the drug discovery pipeline, from isolation of new microbial strains to pre-clinical development of lead compounds. Importantly, they will also be trained to overcome existing bottlenecks in the field, e.g. low yields and low chemodiversity, isolation of known compounds, toxicity of compounds. The discovery rates of new bioactive antimicrobial and anticancer molecules will be enhanced through 11 PhD projects that cover all phases of the biodiscovery pipeline. As a final outcome of the project, we envisage the creation of a marine biodiscovery start-up company, which will include most of the MarPipe partners. The scientists of the future will be trained to become conscious about the socio-economic and policy context of their work, since several specific MarPipe PhD projects focus on legal, policy, innovation and entrepreneurship themes.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2015 | Award Amount: 373.50K | Year: 2015

Marine organisms have the capacity to produce a variety of biologically potent natural products. Such novel molecules have new mechanisms of action and therefore could be used to treat human diseases and enhance the quality of life, especially in the ageing segment of the population. However, although there is growing interest in marine natural products (MNP) as potential therapeutic agents for human age-related diseases, few MNPs have reached clinical trials and the market. To fully exploit these promising biological resources, new strategies in the pipeline as well as a new cohort of cross-disciplinary trained scientists are needed to overcome existing bottlenecks and ensure the production of high value biomolecules. Ocean Medicines is a network of academic, research centres and SMEs across Europe, with proven experience in higher education, training and endowed with state-of-the art scientific and technical expertise and infrastructures. Our aim is to establish a network of collaboration and knowledge-exchange between industrial and academic partners to further develop lead compounds from marine microorganisms having anticancer or anti-infective effects that have already been identified by the consortium. To achieve this a secondment programme will be set up to prepare a new generation of marine biodiscovery scientists that will be trained on how to isolate compounds from bioactive bacteria/microalgae and take these through to semi-industrial scale-up for further development and toxicity testing at the pre-clinical level. The Ocean Medicines programme also considers commercialization, innovation and entrepreneurship activities including how to start a new business and how to favour an industrial career to seconded researchers. We are confident that the establishment of this international research network, with its synergistic effects, will significantly contribute to advance all of the involved labs to the top level in the field of marine drug discovery.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRADEV-4-2014-2015 | Award Amount: 9.04M | Year: 2015

Marine (blue) biotechnology is the key to unlocking the huge economic potential of the unique biodiversity of marine organisms. This potential remains largely underexploited due to lack of connectivity between research services, practical and cultural difficulties in connecting science with industry, and high fragmentation of regional research, development and innovation (RDI) policies. To overcome these barriers, EMBRIC (European Marine Biological Resource Infrastructure Cluster) will link biological and social science research infrastructures (EMBRC, MIRRI, EU-OPENSCREEN, ELIXIR, AQUAEXCEL, RISIS) and will build inter-connectivity along three dimensions: science, industry and regions. The objectives of EMBRIC are to: (1) develop integrated workflows of high quality services for access to biological, analytical and data resources, and deploy common underpinning technologies and practices; (2) strengthen the connection of science with industry by engaging companies and by federating technology transfer (TT) services; (3) defragment RDI policies and involve maritime regions with the construction of EMBRIC. Acceleration of the pace of scientific discovery and innovation from marine bioresources will be achieved through: (i) establishment of multidisciplinary service-oriented technological workflows; (ii) joint development activities focusing on bioprospection for novel marine natural products, and marker-assisted selection in aquaculture; (iii) training and knowledge transfer; (iv) pilot transnational access to cluster facilities and services. EMBRIC will also connect TT officers from contrasted maritime regions to promote greater cohesion in TT practices. It will engage with policy-makers with the aim of consolidating a perennial pan-European virtual infrastructure cluster rooted in the maritime regions of Europe and underpinning the blue bioeconomy.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRADEV-4-2014-2015 | Award Amount: 14.84M | Year: 2015

The social and economic challenges of ageing populations and chronic disease can only be met by translation of biomedical discoveries to new, innovative and cost effective treatments. The ESFRI Biological and Medical Research Infrastructures (BMS RI) underpin every step in this process; effectively joining scientific capabilities and shared services will transform the understanding of biological mechanisms and accelerate its translation into medical care. Biological and medical research that addresses the grand challenges of health and ageing span a broad range of scientific disciplines and user communities. The BMS RIs play a central, facilitating role in this groundbreaking research: inter-disciplinary biomedical and translational research requires resources from multiple research infrastructures such as biobank samples, and resources from multiple research infrastructures such as biobank samples, imaging facilities, molecular screening centres or animal models. Through a user-led approach CORBEL will develop the tools, services and data management required by cutting-edge European research projects: collectively the BMS RIs will establish a sustained foundation of collaborative scientific services for biomedical research in Europe and embed the combined infrastructure capabilities into the scientific workflow of advanced users. Furthermore CORBEL will enable the BMS RIs to support users throughout the execution of a scientific project: from planning and grant applications through to the long-term sustainable management and exploitation of research data. By harmonising user access, unifying data management, creating common ethical and legal services, and offering joint innovation support CORBEL will establish and support a new model for biological and medical research in Europe. The BMS RI joint platform will visibly reduce redundancy and simplify project management and transform the ability of users to deliver advanced, cross-disciplinary research.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP-SICA | Phase: OCEAN.2011-3 | Award Amount: 16.99M | Year: 2012

The overall scientific objectives of PERSEUS are to identify the interacting patterns of natural and human-derived pressures on the Mediterranean and Black Seas, assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. Well-coordinated scientific research and socio-economic analysis will be applied at a wide-ranging scale, from basin to coastal. The new knowledge will advance our understanding on the selection and application of the appropriate descriptors and indicators of the MSFD. New tools will be developed in order to evaluate the current environmental status, by way of combining monitoring and modelling capabilities and existing observational systems will be upgraded and extended. Moreover, PERSEUS will develop a concept of an innovative, small research vessel, aiming to serve as a scientific survey tool, in very shallow areas, where the currently available research vessels are inadequate. In view of reaching Good Environmental Status (GES), a scenario-based framework of adaptive policies and management schemes will be developed. Scenarios of a suitable time frame and spatial scope will be used to explore interactions between projected anthropogenic and natural pressures. A feasible and realistic adaptation policy framework will be defined and ranked in relation to vulnerable marine sectors/groups/regions in order to design management schemes for marine governance. Finally, the project will promote the principles and objectives outlined in the MSFD across the SES. Leading research Institutes and SMEs from EU Member States, Associated States, Associated Candidate countries, non-EU Mediterranean and Black Sea countries, will join forces in a coordinated manner, in order to address common environmental pressures, and ultimately, take action in the challenge of achieving GES.


Grant
Agency: European Commission | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2012-ITN | Award Amount: 3.34M | Year: 2013

NEPTUNE will train a new generation of biologists through cutting edge research on marine animal models. The network unites 8 leading European labs with complementary expertise in evolutionary developmental biology (EvoDevo), bioinformatics, functional neurobiology, and palaeontology; four leading visiting researchers from Europe and the US; a full partner from industry, Sigma-Aldrich, specialised in advanced genetic manipulation technology; and, as associate partner, a leading manufacturer of microscopy systems, Carl Zeiss MicroImaging GmbH. The transfer of state-of-art technologies - genetic manipulation, next generation sequencing and imaging - to a range of marine species has opened the possibility of addressing major unsolved questions in evolution and functional neurobiology of marine larvae. Modern marine science provides a unique and exciting context for high level, multidisciplinary and intersectorial research training. NEPTUNE fellows will be trained in diverse reverse genetics and imaging techniques in new marine animal models, and will apply these to research topics ranging from the evolution of larval body plans to the characterization of visual and other sensory systems. They will explore the genetic basis for evolutionary change embedded in a strong evolutionary conceptual framework.. Fellows will benefit from opportunities to work in an industrial setting and to collaborate with the private sector partners. The network will provide a structured environment for training by research, targeted intra- and intersectorial secondments, mentoring and career guidance, and for development of complementary skills (science communication, management, mansucript/grant writing, presentation and outreach). The network will provide training and expertise through annual graduate schools and 4 Marine Station-based summer courses with industry participation open to the broader community, continuing a tradition of excellence already established by the partners.


Smetacek V.,Alfred Wegener Institute for Polar and Marine Research | Zingone A.,Stazione Zoologica Anton Dohrn
Nature | Year: 2013

Sudden beaching of huge seaweed masses smother the coastline and form rotting piles on the shore. The number of reports of these events in previously unaffected areas has increased worldwide in recent years. These 'seaweed tides' can harm tourism-based economies, smother aquaculture operations or disrupt traditional artisanal fisheries. Coastal eutrophication is the obvious, ultimate explanation for the increase in seaweed biomass, but the proximate processes that are responsible for individual beaching events are complex and require dedicated study to develop effective mitigation strategies. Harvesting the macroalgae, a valuable raw material, before they beach could well be developed into an effective solution. © 2013 Macmillan Publishers Limited. All rights reserved.

Loading Stazione Zoologica Anton Dohrn collaborators
Loading Stazione Zoologica Anton Dohrn collaborators