Stavanger, Norway
Stavanger, Norway

Statoil ASA, , is a Norwegian multinational oil and gas company headquartered in Stavanger, Norway. It is a fully integrated petroleum company with operations in thirty-six countries. By revenue, Statoil is ranked by Forbes Magazine as the world's eleventh largest oil and gas company and the twenty-sixth largest company, regardless of industry, by profit in the world. The company has about 23,000 employees.Statoil was formed by the 2007 merger of Statoil with the oil and gas division of Norsk Hydro.As of 2013, the Government of Norway is the largest shareholder in Statoil with 67% of the shares, while the rest is public stock. The ownership interest is managed by the Norwegian Ministry of Petroleum and Energy. The company is headquartered and led from Stavanger, while most of their international operations are currently led from Fornebu. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Statoil | Date: 2017-01-04

A system and method for producing hydrocarbons from a subsurface hydrocarbon-bearing formation. The system comprises a production well, at least part of the production well located in a portion of the hydrocarbon-bearing formation. A heating well is also provided, at least part of the heating well located in a portion of the hydrocarbon-bearing formation; wherein the heating well comprises a main well and a plurality of smaller bore lateral wells extending into the hydrocarbon-bearing formation. The smaller bore lateral wells improve heat distribution within the formation, and so fewer heating wells are required to achieve the same effect as using heating wells without smaller bore lateral wells.


Patent
Statoil | Date: 2017-03-15

A sensor system (1) for deployment on or close to the seabed in marine seismic surveys. The system (1) comprises a central hub (4), and a plurality of arms (3) coupled to the central hub (4), wherein each arm (3) has a degree of freedom of movement with respect to the central hub (4). The system (1) further comprises at least one seismic sensor (6) mounted to each of said arms (3).


Patent
Statoil | Date: 2017-02-03

A method of completing a well which has a longitudinal axis along a direction with a horizontal component, the method comprising rotating a first string and moving the first string into the well along the longitudinal axis of the well, providing a swivel joint rotatably connecting the first string to a second string, moving the second string along the longitudinal axis of the well into the well, wherein the second string comprises completion equipment, moving the completion equipment into the well along the longitudinal axis of the well.


Patent
California Institute of Technology and Statoil | Date: 2016-09-09

The disclosure herein includes methods of preparing ceramic beads, useful as proppant materials, by mixing ceramic precursors, such as slag, fly ash, or aluminum dross, forming bead precursors from the mixture, and heating the bead precursors to drive a chemical reaction between the ceramic precursors to form the ceramic beads. The resultant ceramic beads may be generally spherical particles that are characterized by diameters of about 0.1 to 2 mm, a diametral strength of at least about 100 MPa, and a specific gravity of about 1.0 to 3.0. A coating process may optionally be used to increase a diametral strength of a proppant material. A sieving process may optionally be used to obtain a smaller range of sizes of proppant materials.


Patent
Statoil | Date: 2016-11-04

A centralizer includes a centralizer body to be situated at the outer surface of a pipe string in the form of casing, liner, or the like used while drilling, the centralizer body being formed with a plurality of outer centralizer blades arranged in an inclined manner to the longitudinal axis thereof, wherein the centralizer body has an separate split inner tube secured to the pipe string by means of a press fit, and low friction inner surface of the centralizer body and separate center tube facing each other are made from low friction material.


Patent
Statoil | Date: 2016-08-18

There is provided a method of initiating or accelerating the establishment of fluid communication between injection and production wells located in a formation, including injecting sufficient solvent into the wellbores of the wells that the solvent more than occupies the horizontal sections of the wells; pressurising the solvent column in the injection wellbore and optionally also production wellbore by the injection of gas such that the pressures of the horizontal section of the injection well and optionally the production well are greater than the formation fracture pressure; maintaining the pressure in the injection wellbore and optionally also the production wellbore; depressurising the injection wellbore and, if pressurized, the production wellbore, the differentials in pressure between the two resulting in backflow of a mixture of solvent and heavy hydrocarbons into the horizontal sections of the production well and/or injection well; and repeating the pressurisation and depressurisation steps for at least one more cycle to generate pressure swings, thus creating enhanced convection of solvent/solvent-heavy hydrocarbon in the porous media of the formation around the well and in the region between the two wells.


Patent
Statoil | Date: 2017-03-15

A method for use in surveying a subsurface region beneath a body of water by detecting S waves propagating through the subsurface region. The method comprises using a first sensor configuration to detect mixed S and P waves on or in the subsurface region, using a second sensor configuration located on or in relatively close proximity to the subsurface region to detect P waves in the water, and using the P waves detected in the water to compensate the detected mixed S and P waves, and thereby attenuate the effects of P waves in the mixed S and P waves.


There is provided a process for the prevention or reduction of surge wave instabilities during the transport in a flowline of a three phase gas condensate comprising a gas phase, an aqueous phase and a condensate phase, characterized in that a dispersing agent is added to the three phase gas condensate which is able to disperse the aqueous phase in the condensate phase or the condensate phase in the aqueous phase, and a means for the prevention or reduction of surge wave instabilities during the transportation of a three phase gas condensate.


Patent
Statoil | Date: 2016-12-27

A CO_(2 )desorption method and equipment for performing this method is described. More specific, a method for desorbing CO_(2 )from an absorption fluid without involving a traditional stripper but instead using a heat exchanger as a flash-tank is disclosed. Further described is the utilization of cooling heat from a condenser for cooling the lean absorbent fluid.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-05-2015 | Award Amount: 51.69M | Year: 2016

In order to unlock the full potential of Europes offshore resources, network infrastructure is urgently required, linking off-shore wind parks and on-shore grids in different countries. HVDC technology is envisaged but the deployment of meshed HVDC offshore grids is currently hindered by the high cost of converter technology, lack of experience with protection systems and fault clearance components and immature international regulations and financial instruments. PROMOTioN will overcome these barriers by development and demonstration of three key technologies, a regulatory and financial framework and an offshore grid deployment plan for 2020 and beyond. A first key technology is presented by Diode Rectifier offshore converter. This concept is ground breaking as it challenges the need for complex, bulky and expensive converters, reducing significantly investment and maintenance cost and increasing availability. A fully rated compact diode rectifier converter will be connected to an existing wind farm. The second key technology is an HVDC grid protection system which will be developed and demonstrated utilising multi-vendor methods within the full scale Multi-Terminal Test Environment. The multi-vendor approach will allow DC grid protection to become a plug-and-play solution. The third technology pathway will first time demonstrate performance of existing HVDC circuit breaker prototypes to provide confidence and demonstrate technology readiness of this crucial network component. The additional pathway will develop the international regulatory and financial framework, essential for funding, deployment and operation of meshed offshore HVDC grids. With 35 partners PROMOTioN is ambitious in its scope and advances crucial HVDC grid technologies from medium to high TRL. Consortium includes all major HVDC and wind turbine manufacturers, TSOs linked to the North Sea, offshore wind developers, leading academia and consulting companies.

Loading Statoil collaborators
Loading Statoil collaborators