Federal State Unitary Enterprise

Moscow, Russia

Federal State Unitary Enterprise

Moscow, Russia
SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: AAT.2013.1-4. | Award Amount: 37.06M | Year: 2013

AFLoNext is a four year EC L2 project with the objective of proving and maturing highly promising flow control technologies for novel aircraft configurations to achieve a quantum leap in improving aircrafts performance and thus reducing the environmental footprint. The project consortium is composed by forty European partners from fifteen countries. The work has been broken down into seven work packages. The AFLoNext concept is based on six Technology Streams: (1) Hybrid Laminar Flow technology applied on fin and wing for friction drag reduction. (2) Flow control technologies applied on outer wing for performance increase. (3) Technologies for local flow separation control applied in wing/pylon junction to improve the performance and loads situation mainly during take-off and landing. (4) Technologies to control the flow conditions on wing trailing edges thereby improving the performance and loads situation in the whole operational domain. (5) Technologies to mitigate airframe noise during landing generated on flap and undercarriage and through mutual interaction. (6) Technologies to mitigate/control vibrations in the undercarriage area during take-off and landing. AFLoNext aims to prove the engineering feasibility of the HLFC technology for drag reduction on fin in flight test and on wing by means of large scale testing as well as for vibrations mitigation technologies for reduced aircraft weight and for noise mitigation technologies. The peculiarity of the AFLoNext proposal in terms of holistic technical approach and efficient use of resources becomes obvious through the joint use of a flight test aircraft as common test platform for the above mentioned technologies. To improve aircraft performance locally applied active flow control technologies on wing and wing/pylon junction are qualified in wind tunnels or by means of lab-type demonstrators.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: AAT.2013.8-1. | Award Amount: 3.21M | Year: 2013

BUTERFLI is a project in response to the invitation to tender from European Commission FP7 within Call FP7-AAT-2013 RTD-Russia. BUTERFLI is the acronym of BUffet and Transition delay control investigated within Europe-Russia cooperation for improved FLIght performances. The Project Topic will focus on experimental and numerical flow control investigations of different phenomena: the buffet on a laminar airfoil, the buffet on a turbulent supercritical airfoil, and the cross-flow instabilities on a swept wing. Different control techniques will be studied: bump design, fluidic control devices, and DBD devices. The Project aims at the improvement of aircraft flight performances. This Project will be carried out in the framework of a EUROPE RUSSIA cooperation. ONERA is the coordinator, and TSAGI will act as Coordinator of the Russian Parties. There are 12 partners, 7 from Europe and 5 from Russia. ONERA (F), IAG-Stuttgart (G), DLR (G), KTH (S), University of Nottingham (UK), EADS UK Ltd. (UK), TsAGI (Russia), MIPT (Russia), JIHT (Russia), ITAM (Russia), Sukhoi Civil Aircraft (Russia), and Erdyn (F). BUTERFLI is splitted into four work packages: WP1 is dedicated to buffet control on 2D turbulent supercritical wing (tangential jet blowing and plasma actuators) WP2 is dedicated to buffet control on 2D laminar wing (bump and perforation blowing) WP3 is dedicated to crossflow instabilities control on swept wing WP4 ensures the scientific coordination of the overall project, and will proposes final roadmaps for the future.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: AAT.2013.8-1. | Award Amount: 3.42M | Year: 2013

The PoLaRBEAR (Production and Analysis Evolution For Lattice Related Barrel Elements Under Operations With Advanced Robustness) project focuses on reliable novel composite aircraft structures based on geodesic technology aiming at a significant higher Robustness and Technology Readiness Level (TRL). While the global structural behavior of composite geodesic structures is investigated and understood in a top-down approach in EU-ALaSCA, PoLaRBEAR will follow up in a bottom-up approach on local level analyzing the geodesic structures in terms of in-operation demands for higher TRL. The main objectives of this research proposal are: Industrial highly automated process for cost efficient barrel manufacturing Advanced reliability of geodesic structures under operational loads Design rules for robust grid structures The aim is to promote a competent cooperation in the development of light, low-cost airframe fuselage structures made with a new generation of composite materials and based on geodesic / iso-grid technologies under operations. The proposal will enhance the cooperation in research and in innovation between the European Union and the Russian Federation in the field of civil transport aircraft.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: COMPET-09-2014 | Award Amount: 1.01M | Year: 2015

The objective of this proposal is to investigate the necessary demonstration activities in order to mature technologies for nuclear electric propulsion (NEP) systems that is considered one of the key enabler to allow deep exploration and science missions both manned and unmanned. The DEMOCRITOS projects aims to define three Demonstrator Concepts in regards to NEP technologies: 1. Detailed preliminary designs of ground experiments that will allow maturing the necessary technologies in the field of MW level nuclear electric propulsion. The project will investigate the interaction of the major subsystems (thermal, power management, propulsion, structures and conversion) with each other and a (simulated) nuclear core providing high power, in the order of several hundred kilowatts. 2. Nuclear reactor cost studies and simulations to provide feedback to the simulated nuclear core of DEMOCRITOS ground experiments as well as conceptualize the concept of nuclear space reactor and outline the specifications for a Core Demonstrator, including an analysis of the regulatory and safety framework that will be necessary for such a demonstration to take place on the ground. 3. System architecture and robotic studies that will investigate in detail the overall design of a high power nuclear spacecraft, together with a pragmatic strategy for assembly in orbit of such a large structure coupled with a nuclear reactor. Additionally, the project partners will define a programmatic plan, insuring that the demonstrators can be built, tested, and reach the established ambitious objectives, this with a clear organization between international partners and with costs shared in a sustainable way. DEMOCRITOS aims to form a cluster around NEP related technologies by organizing an international workshop and invite external stakeholders to propose ideas for the ground and flight demonstrators or possibly join in the effort to realize the ground demonstrator experiments.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: MG-1.1-2014 | Award Amount: 8.97M | Year: 2015

AGILE targets multidisciplinary optimization using distributed analysis frameworks. The involvement of many disciplinary analyses ranging up to high levels of fidelity and agile workflow management are considered to be state-of-the-art and starting point for AGILE. Advanced optimization techniques and strategies will be developed in order to exploit available computing systems and to gain faster convergence to optimal solutions. Surrogates, decomposition, robust design and uncertainties, global-local optimization, mixed fidelity optimization and system-of-system optimization are central fields of research. Operating the coupled numerical system and interpreting the high fidelity results requires collaboration of heterogeneous specialists. Techniques for collaboration are the second scientific objective of AGILE using the research on optimization techniques as use case. The interactions between humans and the interactions of the design team with the numerical system both are investigated. Knowledge-enabled information technologies will be developed in order to support the collaboration process constituting the third, outer-most layer of the nested research concept. Novel technologies are iteratively implemented, tested and enhanced. Use cases are realistic overall aircraft design tasks for conventional, strut-braced, box-wing and BWB configurations. The project is set up to proof a speed up of 40% for solving realistic MDO problems compared to todays state-of-the-art. The resulting technologies will be made available; amongst others via an Open MDO Test Suite. Reduced development costs and reduced time to market will enable a more agile way of collaboration and joint development and experimenting on innovative products. AGILE pronounces the collaboration of SME, RES and HES in order to contribute to IND-centred virtual extended enterprises. AGILE considers all pre-existing conventions and will contribute to the CRESCENDO results and dissemination plan.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: MG-1.4-2014 | Award Amount: 16.38M | Year: 2015

The EC Flight Path 2050 vision aims to achieve the highest levels of safety to ensure that passengers and freight as well as the air transport system and its infrastructure are protected. However, trends in safety performance over the last decade indicate that the ACARE Vision 2020 safety goal of an 80% reduction of the accident rate is not being achieved. A stronger focus on safety is required. There is a need to start a Joint Research Programme (JRP) on Aviation Safety, aiming for Coordinated Safety Research as well as Safety Research Coordination. The proposed JRP Safety, established under coordination of EREA, is built on European safety priorities, around four main themes with each theme consisting of a small set of projects. Theme 1 (New solutions for todays accidents) aims for breakthrough research with the purpose of enabling a direct, specific, significant risk reduction in the medium term. Theme 2 (Strengthening the capability to manage risk) conducts research on processes and technologies to enable the aviation system actors to achieve near-total control over the safety risk in the air transport system. Theme 3 (Building ultra-resilient systems and operators) conducts research on the improvement of Systems and the Human Operator with the specific aim to improve safety performance under unanticipated circumstances. Theme 4 (Building ultra-resilient vehicles), aims at reducing the effect of external hazards on the aerial vehicle integrity, as well as improving the safety of the cabin environment. To really connect and drive complementary Safety R&D (by EREA) to safety priorities as put forward in the EASA European Aviation Safety plan (EASp) and the EC ACARE Strategic Research and Innovation (RIA)Agenda, Safety Research Coordination activities are proposed. Focus on key priorities that impact the safety level most will significantly increase the leverage effect of the complementary safety Research and Innovation actions planned and performed by EREA.


Grant
Agency: European Commission | Branch: H2020 | Program: CS2-RIA | Phase: JTI-CS2-2014-CFP01-AIR-01-01 | Award Amount: 3.41M | Year: 2016

The ASPIRE proposal, gathering DLR, NLR, ONERA and TsAGI, responds to the topic JTI-CS2-2014-CFP01-AIR-01-01 Aerodynamic and acoustic capabilities developments for close coupling, high by-pass ration turbofan Aircraft integration. The comprehensive experience of the partners working on innovative engine aircraft integration concepts both individually and in previous collaborative efforts motivated their common application. The high level objectives of the ASPIRE proposal lead to improve and validate numerical and experimental capabilities to assess the aerodynamic and acoustic performance of innovative aircraft configurations equipped with ultra-high by-pass ratio turbofan (UHBR). For that purpose, the numerical activities will be performed on a reference configuration partially designed by the consortium (generic fan/OGV combination) and by the lead industrial partner (nacelle, pylon, wing). Cross-comparison of codes are foreseen in specific tasks to improve the reliability of tools and better understand the tremendous interactions between airframe and UHBR engines. The experimental activities aim at improving the efficiency of acoustic means during wind-tunnel and flight tests. The ASPIRE total grant request to EC is 2 908 235 for DLR, NLR and ONERA, the activities conducted by TsAGI being funded outside (national grant). The project will be conducted over 2 years in close alignment with the overall LPA-IADP and AIRFRAME-ITD needs and in agreement with the concerned IADP & ITD industrial coordinators and further selected and involved core partners and/or partners. The ASPIRE proposal will also be conducted in manner consistent with the other research activities performed in the AIRFRAME-ITD and the LPA-IADP. The integration of experimental and numerical capabilities will significantly contribute to ACARE SRIA 2, in terms of the greening of air transport, improving industrial leadership, and bringing enhanced mobility.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: MG-1.1-2014 | Award Amount: 3.05M | Year: 2015

The ability to simulate aerodynamic flows using CFD methods has progressed rapidly over the last decades and has given rise to a change in design processes in aeronautics already. But more improvement is necessary to overcome the (still) existing lack in confidence in CFD usage, based on turbulence modelling. The TILDA project will offer methods and approaches combining advanced and efficient high-order numerical schemes (HOMs) with innovative approaches for LES and DNS in order to resolve all relevant flow features on tens of thousands of processors in order to get close to a full LES/DNS solution for 1billion degrees-of-freedom (DOF) not exceeding turn-around times of a few days. The TILDA project will provide both an improved physical knowledge and more accurate predictions of non-linear, unsteady flows near borders of the flight envelope - which will directly contribute to an enhanced reliability. The main highly innovative objectives, targeting at industrial needs read: Advance methods to accelerate HOM for unsteady turbulence simulations on unstructured grids. Advance methods to accelerate LES and future DNS methodology by multilevel, adaptive, fractal and similar approaches on unstructured grids. Use existent large scale HPC networks to enable industrial applications of LES/DNS close(r) to daily practice. Compact high-order methods offer a very high ratio between computational work per DOF combined to a low data dependency stencil, making these methods extremely well adapted for shared-memory parallel processors, and allow for efficient redistribution over an increased number of processors. Provide grid generation methods for HOM on unstructured grids with emphasis on valid curvilinear meshes for complex geometries, and accounting for mesh and solution quality. Provide suitable I/O and interactive co- and post-processing tools for large datasets. Demonstration of multi-disciplinary capabilities of HOM for LES in the area of aero-acoustics.


Patent
Federal State Unitary Enterprise and Joint Stock Company Aeropribor Voskhod | Date: 2016-07-06

The invention relates to the field of aviation and to devices for determining aircraft flight parameters or wind tunnel flow parameters. The present device consists of a head part with intake holes located thereon, which are connected by channels to couplers, and a support, attached to the head part from behind. The surface of the head part is provided with vortex generators. The vortex generators can be in the form of indentations or protrusions of various shapes on the surface of the air pressure probe, or in the form of ribs formed as a result of the mating of elements of the flat or curved planes that form the surfaces of the head part and the support. The technical result is an increased operational range of measurement and a wider field of practical application.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: AAT.2013.8-1. | Award Amount: 3.40M | Year: 2013

The main objective of RESEARCH project is the definition of an electrical architecture for Flight Control System capable of controlling a flight control surface on an Aircraft with the help of electrically operated actuators, thus replacing the hydraulic actuators commonly used in current Aircraft designs. This architecture will be designed with the main objective of being electrical, as this is the main purpose of this call, and certifiable, since the intention is to be able to use it in a possible future Aircraft. The objective of the RESEARCH project is to find a robust architecture to meet the constraints imposed by safety regulations while keeping other system performances (as weight, Reliability) as optimal as possible.

Loading Federal State Unitary Enterprise collaborators
Loading Federal State Unitary Enterprise collaborators