Time filter

Source Type

Shi Y.-Q.,Harbin Medical University | Yan M.,Harbin Medical University | Liu L.-R.,Harbin Medical University | Zhang X.,Harbin Medical University | And 5 more authors.
Cellular Physiology and Biochemistry | Year: 2015

Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM). It is well known that the human ether-ago- go-related gene (hERG) controls the rapid delayed rectifier K+ current (IKr) in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR) by up-regulating the expression levels of activating transcription factor-6 (ATF-6) and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel and ameliorates the high-glucose-induced inhibition of the hERG channel. Copyright © 2015 S. Karger AG, Basel.

Dong Z.-X.,Harbin Medical University | Zhao X.,Harbin Medical University | Gu D.-F.,Harbin Medical University | Shi Y.-Q.,Harbin Medical University | And 7 more authors.
Cellular Physiology and Biochemistry | Year: 2012

Liensinine and neferine, a kind of isoquinoline alkaloid, can antagonize the ventricular arrhythmias. The human ether-a-go-go-related gene (hERG) is involved in repolarization of cardiac action potential. We investigated the effects of liensinine and neferine on the biophysical properties of hERG channel and the underlying structure-activity relationships. The effects of liensinine and neferine were examined on the hERG channels in the stable transfected HEK293 cells using a whole-cell patch clamp technique, western blot analysis and immunofluorescence experiment. The pharmacokinetics and tissue distribution determination of liensinine and neferine in rats were determined by a validated RP-HPLC method. Liensinine and neferine induced decrease of current amplitude in dose-dependent. Liensinine reduced hERG tail current from 70.3±6.3 pA/pF in control group to 56.7±2.8 pA/pF in the 1 μM group, 53.0±2.3 pA/pF (3 μM) and 17.8±0.7 pA/pF (30 μM); the corresponding current densities of neferine-treated cells were 41.9±3.1 pA/pF, 32.3±3.1 pA/pF and 16.2±0.6 pA/pF, respectively. Neferine had binding affinity for the open and inactivated state of hERG channel, liensinine only bound to the open state. The inhibitory effects of liensinine and neferine on hERG current were attenuated in the F656V or Y652A mutant channels. Neferine distributed more quickly than liensinine in rats, which was found to be in higher concentration than liensinine. Both liensinine and neferine had no effect on the generation and expression of hERG channels. In conclusion, neferine is a more potent blocker of hERG channels than liensinine at low concentration (<10 μM), which may be due to higher hydrophobic nature of neferine compared with liensinine. Neferine may be safety even for long-term treatment as an antiarrhythmic drug. Copyright © 2012 S. Karger AG, Basel.

Zhao X.,Harbin Medical University | Yao H.,Harbin Medical University | Yin H.-L.,Harbin Medical University | Zhu Q.-L.,Harbin Medical University | And 6 more authors.
Journal of Pharmacological Sciences | Year: 2013

We investigated the effects of Ginkgo biloba extract (GBE) and ginkgolide (GLD) on human ether-a-go-go-related gene (hERG)-encoded K+ channels and its underlying mechanisms in the hERG-HEK293 cell line by determining GBE- and GLD-induced changes in action potential duration (APD), L-type calcium currents (ICa-L), and the intracellular calcium concentration ([Ca2+]i) in guinea-pig ventricular myocytes. hERG currents, APD and ICa-L were recorded using the whole-cell patch clamp technique, the [Ca2+]i was examined by an immunofluorescence experiment. In the present study, we found that a low concentration of GBE (0.005 mg/ml) increased hERG currents, but the high concentration of GBE (from 0.05 to 0.25 mg/ml) reduced hERG currents. GLD reduced hERG currents in a concentration-dependent manner (from 0.005 to 0.25 mg/ml). Both GBE and GLD altered kinetics of the hERG channel. GBE accelerated the activation of hERG channels without changing the inactivation curve, but reduced the time constant of inactivation; GLD did not shift the activation or the inactivation curve, but only reduced the time constant of inactivation. Both GBE and GLD shortened the APD, inhibited the ICa-L currents, and decreased the [Ca2+]i in isolated guinea-pig ventricular myocytes. The results indicate that GBE and GLD can prevent ischemic arrhythmias and have an antiarrhythmic effect potential via inhibition of IKr and ICa-L currents. © The Japanese Pharmacological Society.

Zhao X.,Harbin Medical University | Zhang K.-P.,Harbin Medical University | Huang T.,Harbin Medical University | Yan C.-C.,Harbin Medical University | And 6 more authors.
Naunyn-Schmiedeberg's Archives of Pharmacology | Year: 2014

Arsenic trioxide (As2O3) is used to treat acute promyelocytic leukemia. However, the cardiotoxicity of long QT syndrome restricts its clinical application. Previous studies showed that As2O3 can damage the human ether-a-go-go-related gene (hERG) current via disturbing its trafficking to cellular membrane. This study aimed to investigate whether the As2O3-insulted hERG channel can be rescued by resveratrol, a recognized cardioprotective agent. The whole-cell patch clamp technique was used to record the hERG current and action potential duration. Co-immunoprecipitation and Western blot assay were applied to determine the function of hERG-Hsp70/Hsp90 chaperone complexes and the expression alteration of protein-folding-related proteins, respectively. Compared with treatment of As2O3 alone, co-treatment with resveratrol successfully restored the current and surface expression of hERG and obviously shortened action potential duration in guinea pig ventricular myocytes. Further experiments demonstrate that resveratrol relieved As2O3-caused endoplasmic reticulum (ER) stress by restoring the function of hERG-Hsp70/Hsp90 chaperone complexes and downregulating the protein expression of ER chaperone proteins (calnexin and calreticulin) and activating transcription factor 6. In conclusion, resveratrol was able to rescue the trafficking deficiency and relieve the ER stress (ERS). Our findings suggest that resveratrol has a potential effect to alleviate the adverse effect of As2O3 on cardiotoxicity. © 2014 Springer-Verlag Berlin Heidelberg.

Loading State Province Key Laboratory of Biopharmaceutical Engineering collaborators
Loading State Province Key Laboratory of Biopharmaceutical Engineering collaborators