Time filter

Source Type

Pan Q.,State Key Laboratory of Virology | Chen H.,State Key Laboratory of Virology | Wang F.,State Key Laboratory of Virology | Jeza V.T.,State Key Laboratory of Virology | And 8 more authors.
Journal of Innate Immunity | Year: 2012

L-ficolin, one of the complement lectins found in human serum, is a novel pattern recognition molecule that can specifically bind to microbial carbohydrates, thereby activating the lectin complement pathway and mounting a protective innate immune response. However, little is known about the role of L-ficolin during viral infections in vivo. In the present study, we used a mouse model of influenza A virus infection to demonstrate that the administration of exogenous L-ficolin or ficolin A (FCNA - an L-ficolin-like molecule in the mouse) is protective against the virus. Furthermore, FCNA-null mice have a greatly increased susceptibility to infection with the influenza A virus. Moreover, we found recombinant human L-ficolin inhibited influenza A virus entry into Madin-Darby canine kidney cells. More importantly, L-ficolin can recognize and bind hemagglutinin (HA) and neuraminidase (NA) glycoproteins and different subtypes of influenza A virus, and these interactions can be competitively inhibited by N-acetyl-D-glucosamine. In addition, the binding of L-ficolin and FCNA may lead to the activation of the lectin complement pathway. To our knowledge, this is the first report demonstrating that L-ficolin can block influenza virus infections both in vitro and in vivo using FCNA-knockout mice, possibly by interacting with the carbohydrates of HA and NA. Therefore, these data may provide new immunotherapeutic strategies based on the innate immune molecule L-ficolin against the influenza A virus. Copyright © 2012 S. Karger AG, Basel.

Xu N.,Wuhan University | Xu N.,State Key Laboratory of Virology | Zhang Z.-F.,CAS Wuhan Institute of Virology | Zhang Z.-F.,State Key Laboratory of Virology | And 9 more authors.
Biomicrofluidics | Year: 2012

Microfluidic chip is a promising platform for studying virus behaviors at the cell level. However, only a few chip-based studies on virus infection have been reported. Here, a three-layer microfluidic chip with low shear stress was designed to monitor the infection process of a recombinant Pseudorabies virus (GFP-PrV) in real time and in situ, which could express green fluorescent protein during the genome replication. The infection and proliferation characteristics of GFP-PrV were measured by monitoring the fluorescence intensity of GFP and determining the one-step growth curve. It was found that the infection behaviors of GFP-PrV in the host cells could hardly be influenced by the microenvironment in the microfluidic chip. Furthermore, the results of drug inhibition assays on the microfluidic chip with a tree-like concentration gradient generator showed that one of the infection pathways of GFP-PrV in the host cells was microtubule-dependent. This work established a promising microfluidic platform for the research on virus infection. © 2012 American Institute of Physics.

Shu Y.,Wuhan University | Shu Y.,State Key Laboratory of Virology | Shu Y.,Wuhan Institute of Biotechnology | Lu W.,Wuhan University | And 24 more authors.
Lab on a Chip - Miniaturisation for Chemistry and Biology | Year: 2013

Labeling of viruses can be used to reveal viral infection pathways and screen potential anti-viral drugs. Complex procedures, including virus cultivation, purification and labeling are involved in traditional virus labeling methods. And the manipulation of living virus brings risk to researcher health. In this work, we report a general method for site-specific labeling of the envelope virus in an integrated microfluidic device with simple procedures and high security. Site-specific labeling of virus was achieved by fusing the biotin acceptor peptide (AP-tag) and the biotin ligase enzyme (BirA enzyme) with the envelope protein GP64 of baculovirus. The AP-tag could be modified by BirA enzyme to introduce the biotin moiety onto the viral envelope. Western blots and fluorescence colocalization analysis proved that the baculoviruses were biotinylated and labeled with high efficiency. The integrated device incorporated several operation steps including cell seeding, cell culture, cell transfection, virus culture and virus labeling. Since virus biotinylation was achieved during the process of virus cultivation, the complex procedures of virus labeling were simplified in our device. Furthermore the whole process could be completed in the integrated microfluidic device, and direct contact between viruses and researchers could be eliminated in our method, which could greatly reduce the risk to researcher health during living virus labeling. This journal is © 2013 The Royal Society of Chemistry.

Loading State Key Laboratory of Virology collaborators
Loading State Key Laboratory of Virology collaborators