Time filter

Source Type

Liu D.,Hunan Agricultural University | Liu D.,State Key Laboratory of Sub health Intervention Technology | Gong J.,Huazhong University of Science and Technology | Gong J.,Nextomics Biosciences Co. | And 19 more authors.
PLoS ONE | Year: 2012

Background: Ganoderma lucidum (Reishi or Ling Zhi) is one of the most famous Traditional Chinese Medicines and has been widely used in the treatment of various human diseases in Asia countries. It is also a fungus with strong wood degradation ability with potential in bioenergy production. However, genes, pathways and mechanisms of these functions are still unknown. Methodology/Principal Findings: The genome of G. lucidum was sequenced and assembled into a 39.9 megabases (Mb) draft genome, which encoded 12,080 protein-coding genes and ~83% of them were similar to public sequences. We performed comprehensive annotation for G. lucidum genes and made comparisons with genes in other fungi genomes. Genes in the biosynthesis of the main G. lucidum active ingredients, ganoderic acids (GAs), were characterized. Among the GAs synthases, we identified a fusion gene, the N and C terminal of which are homologous to two different enzymes. Moreover, the fusion gene was only found in basidiomycetes. As a white rot fungus with wood degradation ability, abundant carbohydrate-active enzymes and ligninolytic enzymes were identified in the G. lucidum genome and were compared with other fungi. Conclusions/Significance: The genome sequence and well annotation of G. lucidum will provide new insights in function analyses including its medicinal mechanism. The characterization of genes in the triterpene biosynthesis and wood degradation will facilitate bio-engineering research in the production of its active ingredients and bioenergy. © 2012 Liu et al.

Liang Z.,Hunan Agricultural University | Yi Y.,Hunan Agricultural University | Guo Y.,State Key Laboratory of Sub Health Intervention Technology | Wang R.,Hunan Agricultural University | And 2 more authors.
International Journal of Molecular Sciences | Year: 2014

Ganoderma lucidum polysaccharide (GLP) is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK) by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose) polymerase (PARP). These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK) pathways. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Liang Z.-E.,Hunan Agricultural Product Processing Institute | Liang Z.-E.,Hunan Agricultural University | Yi Y.-J.,Hunan Agricultural University | Guo Y.-T.,State Key Laboratory of Sub Health Intervention Technology | And 3 more authors.
Molecular Medicine Reports | Year: 2015

Ganoderma lucidum polysaccharides (GLPs), which were purified from the medicinal herb G. lucidum followed by ethanol precipitation, protein depletion using the Sevage assay, purification using DEAE-cellulose (DE-52), dialysis and the use of ultrafiltration membranes, are used as an ingredient in traditional anticancer treatments in China. The aim of the current study was to evaluate the anticancer effects and investigate the underlying molecular mechanisms of GLPs on LoVo human colon cancer cells. The results demonstrated that the GLP-mediated anticancer effect in LoVo cells was characterized by cytotoxicity, migration inhibition, enhanced DNA fragmentation, morphological alterations and increased lactate dehydrogenase release. Furthermore, the activation of caspases-3, -8 and -9 was involved in GLP-stimulated apoptosis. Additionally, treatment with GLPs promoted the expression of Fas and caspase-3 proteins, whilst reducing the expression of cleaved poly(ADP-ribose) polymerase. These data indicate that GLPs demonstrate potential antitumor activity in human colon cancer cells, predominantly through the inhibition of migration and induction of apoptosis. Furthermore, activation of the Fas/caspase-dependent apoptosis pathway is involved in the cytotoxicity of GLPs.

Loading State Key Laboratory of Sub Health Intervention Technology collaborators
Loading State Key Laboratory of Sub Health Intervention Technology collaborators