Time filter

Source Type

Ni B.,State Key Laboratory of Reproductive Medicine | Ni B.,Collaborative Innovation Center For Cancer Personalized Medicine | Lin Y.,State Key Laboratory of Reproductive Medicine | Lin Y.,Collaborative Innovation Center For Cancer Personalized Medicine | And 47 more authors.
Human Molecular Genetics | Year: 2015

Genome-wide association studies (GWAS) have identified several common loci contributing to non-obstructive azoospermia (NOA). However, a substantial fraction of NOA heritability remains undefined, especially those low-frequency [defined here as having a minor allele frequency (MAF) between 0.5 and 5%] and rare (MAF below 0.5%) variants. Here, we performed a 3-stage exome-wide association study in Han Chinese men to evaluate the role of low-frequency or rare germline variants in NOA development. The discovery stage included 962 NOA cases and 1348 healthy male controls genotyped by exome chips and was followed by a 2-stage replication with an additional 2168 cases and 5248 controls. We identified three low-frequency variants located at 6p22.2 (rs2298090 in HIST1H1E encoding p.Lys152Arg: OR = 0.30, P = 2.40 × 10-16) and 6p21.33 (rs200847762 in FKBPL encoding p.Pro137Leu: OR = 0.11, P = 3.77 × 10-16; rs11754464 in MSH5: OR = 1.78, P = 3.71 × 10-7) associated with NOA risk after Bonferroni correction. In summary, we report an instance of newly identified signals for NOA risk in genes previously undetected through GWAS on 6p22.2-6p21.33 in a Chinese population and highlight the role of low-frequency variants with a large effect in the process of spermatogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved.

PubMed | Nanjing Medical University, State Key Laboratory of Reproductive Medicine and Peking University
Type: Journal Article | Journal: Journal of neuroinflammation | Year: 2016

A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Seipin is highly expressed in hippocampal pyramidal cells and astrocytes. Neuronal knockout of seipin in mice (seipin-KO mice) reduces the hippocampal peroxisome proliferator-activated receptor gamma (PPAR) level without the loss of pyramidal cells. The down-regulation of PPAR has gained increasing attention in neuroinflammation of Alzheimers disease (AD). Thus, the present study focused on exploring the influence of seipin depletion on -amyloid (A)-induced neuroinflammation and A neurotoxicity.Adult male seipin-KO mice were treated with a single intracerebroventricular (i.c.v.) injection of A25-35 (1.2nmol/mouse) or A1-42 (0.1nmol/mouse), generally a non-neurotoxic dose in wild-type (WT) mice. Spatial cognitive behaviors were assessed by Morris water maze and Y-maze tests, and hippocampal CA1 pyramidal cells and inflammatory responses were examined.The A25-35/1-42 injection in the seipin-KO mice caused approximately 30-35% death of pyramidal cells and production of Hoechst-positive cells with the impairment of spatial memory. In comparison with the WT mice, the number of astrocytes and microglia in the seipin-KO mice had no significant difference, whereas the levels of IL-6 and TNF- were slightly increased. Similarly, the A25-35/1-42 injection in the seipin-KO mice rather than the WT mice could stimulate the activation of astrocytes or microglia and further elevated the levels of IL-6 and TNF-. Treatment of the seipin-KO mice with the PPAR agonist rosiglitazone (rosi) could prevent A25-35/1-42-induced neuroinflammation and neurotoxicity, which was blocked by the PPAR antagonist GW9962. In the seipin-KO mice, the level of glycogen synthase kinase-3 (GSK3) phosphorylation at Tyr216 was elevated, while at Ser9, it was reduced compared to the WT mice, which were corrected by the rosi treatment but were unaffected by the A25-35 injection.Seipin deficiency in astrocytes increases GSK3 activity and levels of IL-6 and TNF- through reducing PPAR, which can facilitate A25-35/1-42-induced neuroinflammation to cause the death of neuronal cells and cognitive deficits.

PubMed | Nanjing Medical University and State Key Laboratory of Reproductive Medicine
Type: Journal Article | Journal: Toxicological sciences : an official journal of the Society of Toxicology | Year: 2015

Perfluorooctane sulfonate (PFOS) at a high dose of 10mg/kg has been reported to affect the neuroendocrine system and exert toxic effects in rodents. The present study examined the influence of chronic exposure to a low-dose of PFOS (0.1mg/kg/day) on female reproductive endocrine and function. Herein, we show that adult female mice exposed to PFOS by gavage for 4 months (PFOS-mice) exhibited a prolongation of diestrus without signs of toxic effects. The numbers of mature follicles and corpora luteum were significantly reduced in PFOS-mice with increase of atresic follicles. The levels of serum estrogen (E2) and progesterone at proestrus and diestrus were reduced in PFOS-mice. In comparison with controls, PFOS-mice showed a significant decrease in the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), and gonadotrophin-releasing hormone, the number of kisspeptin neurons and the level of kiss1 mRNA in anteroventral periventricular nucleus at proestrus but not at diestrus, which could be corrected with the normalization to E2. PFOS-mice did not generate an LH-surge at proestrus, which could be rescued by the application of E2 or kisspeptin-10. Notably, the level of ovarian steroidogenic acute regulatory (StAR) mRNA was decreased in PFOS-mice with the reduction of histone H3K14 acetylation in StAR promoter relative to control mice, whereas the P450scc expression and histone H3K14 acetylation showed no difference between the groups. The present study provides evidence that the chronic exposure to the low-dose of PFOS through selectively reducing histone acetylation of StAR suppresses the biosynthesis of E2 to impair the follicular development and ovulation.

PubMed | Jiangsu University, Suzhou University, Nanjing Medical University, State Key Laboratory of Reproductive Medicine and Jiangnan University
Type: Journal Article | Journal: Journal of the American Society of Nephrology : JASN | Year: 2015

Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and characterized by renal microvascular injury along with accelerated synthesis of extracellular matrix proteins causing tubulointerstitial fibrosis. Production of type I collagen, the major component of extracellular matrix, is augmented during renal fibrosis after chronic exposure to hyperglycemia. However, the transcriptional modulator responsible for the epigenetic manipulation leading to induction of type I collagen genes is not clearly defined. We show here that tubulointerstitial fibrosis as a result of DN was diminished in myocardin-related transcription factor A (MRTF-A) -deficient mice. In cultured renal tubular epithelial cells and the kidneys of mice with DN, MRTF-A was induced by glucose and synergized with glucose to activate collagen transcription. Notably, MRTF-A silencing led to the disappearance of prominent histone modifications indicative of transcriptional activation, including acetylated histone H3K18/K27 and trimethylated histone H3K4. Detailed analysis revealed that MRTF-A recruited p300, a histone acetyltransferase, and WD repeat-containing protein 5 (WDR5), a key component of the histone H3K4 methyltransferase complex, to the collagen promoters and engaged these proteins in transcriptional activation. Estradiol suppressed collagen production by dampening the expression and binding activity of MRTF-A and interfering with the interaction between p300 and WDR5 in renal epithelial cells. Therefore, targeting the MRTF-A-associated epigenetic machinery might yield interventional strategies against DN-associated renal fibrosis.

Li P.,State Key Laboratory of Reproductive Medicine | Zhao Y.,State Key Laboratory of Reproductive Medicine | Wu X.,Nanjing Medical University | Xia M.,State Key Laboratory of Reproductive Medicine | And 7 more authors.
Nucleic Acids Research | Year: 2012

Chronic inflammation impairs metabolic homeostasis and is intimately correlated with the pathogenesis of type 2 diabetes. The pro-inflammatory cytokine IFN-γ is an integral part of the metabolic inflammation circuit and contributes significantly to metabolic dysfunction. The underlying mechanism, however, remains largely unknown. In the present study, we report that IFN-γ disrupts the expression of genes key to cellular metabolism and energy expenditure by repressing the expression and activity of SIRT1 at the transcription level. Further analysis reveals that IFN-γ requires class II transactivator (CIITA) to repress SIRT1 transcription. CIITA, once induced by IFN-γ, is recruited to the SIRT1 promoter by hypermethylated in cancer 1 (HIC1) and promotes down-regulation of SIRT1 transcription via active deacetylation of core histones surrounding the SIRT1 proximal promoter. Silencing CIITA or HIC1 restores SIRT1 activity and expression of metabolic genes in skeletal muscle cells challenged with IFN-γ. Therefore, our data delineate an IFN-γ/HIC1/CIITA axis that contributes to metabolic dysfunction by suppressing SIRT1 transcription in skeletal muscle cells and as such shed new light on the development of novel therapeutic strategies against type 2 diabetes. © 2012 The Author(s).

Qin D.,State Key Laboratory of Reproductive Medicine | Qin D.,Key Laboratory of Pathogen Biology of Jiangsu Province | Qin D.,Nanjing Medical University | Feng N.,Nanjing Medical University | And 9 more authors.
BMC Microbiology | Year: 2011

Background: Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to several acquired immunodeficiency syndrome-related malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and a subset of multicentric Castleman's disease. Regulation of viral lytic replication is critical to the initiation and progression of KS. Recently, we reported that herpes simplex virus type 1 (HSV-1) was an important cofactor that activated lytic cycle replication of KSHV. Here, we further investigated the possible signal pathways involved in HSV-1-induced reactivation of KSHV. Results: By transfecting a series of dominant negative mutants and protein expressing constructs and using pharmacologic inhibitors, we found that either Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) or JAK1/STAT6 signaling failed to regulate HSV-1-induced KSHV replication. However, HSV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, also called AKT) pathway and inactivated phosphatase and tensin homologue deleted on chromosome ten (PTEN) and glycogen synthase kinase-3 (GSK-3). PTEN/PI3K/AKT/GSK-3 pathway was found to be involved in HSV-1-induced KSHV reactivation. Additionally, extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinase (MAPK) pathway also partially contributed to HSV-1-induced KSHV replication. Conclusions: HSV-1 infection stimulated PI3K/AKT and ERK MAPK signaling pathways that in turn contributed to KSHV reactivation, which provided further insights into the molecular mechanism controlling KSHV lytic replication, particularly in the context of HSV-1 and KSHV co-infection. © 2011Qin et al; licensee BioMed Central Ltd.

Chen F.,State Key Laboratory of Reproductive Medicine | Zhou L.,Nanjing Medical University | Bai Y.,State Key Laboratory of Reproductive Medicine | Zhou R.,Nanjing Medical University | Chen L.,Nanjing Medical University
Brain Research | Year: 2014

Bisphenol A (BPA), an estrogen-mimicking endocrine disrupter, when administered perinatally can affect affective behaviors in adult rodents, however the underlying mechanisms remain largely unclear. Postnatal day (PND) 80 vehicle-injected control female rats showed more obvious depression- and anxiety-like behaviors than males, indicative of sexually dimorphic affective behaviors. When female breeders were subcutaneously injected with BPA (2 μg/kg) from gestation day 10 to lactation day 7, sex difference of affective behaviors was impaired in their offspring (PND80 BPA-rats), as results that female BPA-rats showed a visible "antianxiety-like" behavior, and male BPA-rats increased depression-like behavior compared to vehicle-injected controls. Notably, basal levels of serum corticosterone and adrenocorticotropin (ACTH), and corticotropin-releasing hormone mRNA were increased in male BPA-rats, but not in female BPA-rats, in comparison with vehicle-injected controls. Following mild-stressor the elevation of corticosterone or ACTH levels was higher in male BPA-rats, whereas it was lower in female BPA-rats than vehicle-injected controls. In comparison with vehicle-injected controls, the level of glucocorticoid receptor (GR) mRNA in hippocampus or hypothalamic paraventricular nucleus was increased in female BPA-rats, while decreased in male BPA-rats. In addition, the levels of hippocampal mineralocorticoid receptor (MR) mRNA, neuronal nitric oxide synthase (nNOS) and phospho-cAMP response element binding protein (p-CREB) were increased in female BPA-rats, but were decreased in male BPA-rats. Furthermore, the testosterone level was reduced in male BPA-rats. The results indicate that the perinatal exposure to BPA through altering the GR and MR expression disrupts the GR-mediated feedback of hypothalamic-pituitary-adrenal (HPA) axis and MR-induced nNOS-CREB signaling, which alters sex difference in affective behaviors. © 2014 Elsevier B.V.

PubMed | Nanjing Medical University and State Key Laboratory of Reproductive Medicine
Type: | Journal: Clinical genetics | Year: 2016

Chromosomal microarray analysis (CMA) has been used routinely in pediatric and prenatal genetic diagnosis in clinical practice, but it has rarely been applied to miscarriage analysis. In this study, we conducted a prospective study to evaluate the feasibility of CMA for genetic diagnosis of first-trimester miscarriage specimens. We successfully analyzed 551 fresh miscarriage specimens using single-nucleotide polymorphism (SNP) array. Among the specimens, 2.9% (16/551) had significant maternal cell contamination and were excluded from the study. Clinically significant chromosomal abnormalities were identified in 295 (55.1%) cases, including 214 (40%) with aneuploidy, 40 (7.5%) with polyploidy, 19 (3.6%) with partial aneuploidy, 12 (2.2%) with pathogenic microdeletion/microduplication, and 10 (1.9%) with uniparental isodisomy (isoUPD). Variants of uncertain significance were obtained in 15 cases (2.8%). Notably, isoUPD involving a single chromosome (chromosome 22) and two recurrent copy number variations, 22q11.2 microdeletion and 7q11.23 microdeletion, were identified as probably to be associated with miscarriage. The frequency and distribution of genetic aberrations in the spontaneous abortion group was not significantly different from those in the recurrent miscarriage group. Our study suggests SNP array is a reliable, robust, and high-resolution technology for genetic diagnosis of miscarriage in clinical practice.

PubMed | Nanjing Medical University and State Key Laboratory of Reproductive Medicine
Type: Journal Article | Journal: Journal of biomedical research | Year: 2015

Accumulating studies have proved that perinatal exposure to environmental dose causes long-term potentiation in anxiety/depression-related behaviors in rats. Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent biological findings in anxiety- and depression-related disorders. The HPA axis is reported to be susceptible to developmental reprogramming. The present study focused on HPA reactivity in postnatal day (PND) 80 male rats exposed perinatally to environmental-dose BPA. When female breeders were orally administered 2g/(kg.day) BPA from gestation day 10 to lactation day 7, their offspring (PND 80 BPA-exposed rats) showed obvious anxiety/depression-like behaviors. Notably, significant increase in serum corticosterone and adrenocorticotropin, and corticotropin-releasing hormone mRNA were detected in BPA-exposed rats before or after the mild stressor. Additionally, the level of glucocorticoid receptor mRNA in the hippocampus, but not the hypothalamus, was decreased in BPA-exposed rats. The levels of hippocampal mineralocorticoid receptor mRNA, neuronal nitric oxide synthase and phosphorylated cAMP response element binding protein were increased in BPA-exposed rats. In addition, the testosterone level was in BPA-exposed rats. The results indicate that reprogramming-induced hyperactivity of the HPA axis is an important link between perinatal BPA exposure and persistent potentiation in anxiety and depression.

Loading State Key Laboratory of Reproductive Medicine collaborators
Loading State Key Laboratory of Reproductive Medicine collaborators