Time filter

Source Type

Dong N.-P.,Central South University | Liang Y.-Z.,Central South University | Xu Q.-S.,Central South University | Mok D.K.W.,Hong Kong Polytechnic University | And 5 more authors.
Analytical Chemistry

Accurate prediction of peptide fragment ion mass spectra is one of the critical factors to guarantee confident peptide identification by protein sequence database search in bottom-up proteomics. In an attempt to accurately and comprehensively predict this type of mass spectra, a framework named MS 2PBPI is proposed. MS2PBPI first extracts fragment ions from large-scale MS/MS spectra data sets according to the peptide fragmentation pathways and uses binary trees to divide the obtained bulky data into tens to more than 1000 regions. For each adequate region, stochastic gradient boosting tree regression model is constructed. By constructing hundreds of these models, MS2PBPI is able to predict MS/MS spectra for unmodified and modified peptides with reasonable accuracy. Moreover, high consistency between predicted and experimental MS/MS spectra derived from different ion trap instruments with low and high resolving power is achieved. MS2PBPI outperforms existing algorithms MassAnalyzer and PeptideART. © 2014 American Chemical Society. Source

Chen W.-F.,Hong Kong Polytechnic University | Chen W.-F.,Qingdao University | Gao Q.-G.,Hong Kong Polytechnic University | Dai Z.-J.,University of Hong Kong | And 4 more authors.

Objective: The present study was designed to determine whether ginsenoside Rg1 could exert selective estrogenic effects by using both cell lines and an animal model. Methods: The endometrial Ishikawa cells and preosteoblastic MC3T3-E1 cells were treated with a different dose of Rg1. Immature CD-1 mice and ovariectomized (OVX) C57BL/6J mice were used to study the short-term and long-term estrogenic effects of Rg1, respectively. Results: Rg1 significantly increased estrogen receptor-dependent alkaline phosphatase activity, activated estrogen response element-luciferase activity, and induced the phosphorylation of mitogen-activated protein kinase kinase, extracellular-regulated kinase, and estrogen receptor-α in Ishikawa cells. In contrast, Rg1 did not induce any estrogenic responses in MC3T3-E1 cells. Administration of Rg1 to immature CD-1 mice did not alter their uterine weight or the estrogen-regulated gene expressions in the uterus. Treatment of OVX C57BL/6J mice with Rg1 via mini-osmotic pumps for 3 months did not alter the uterine weight or induce any transcriptional activation of estrogen receptor in the uterus. Rg1 induced Bcl-2 messenger RNA expression in the left ventricular tissue and striatum but failed to alter the bone mineral density in the femur and tibia of the OVX mice. Conclusions: Rg1 exerted potent estrogenic effects in endometrial cells in vitro as well as in heart and brain tissues in vivo. However, it did not exert any estrogenic effects on reproductive tissues in vivo, nor did it stimulate bone tissues in vitro or in vivo. Our results suggest that the estrogenic effects of Rg1 are distinct from those of estradiol and are cell type and tissue selective. © 2012 The North American Menopause Society. Source

Dong X.-L.,Hong Kong Polytechnic University | Zhang Y.,Hong Kong Polytechnic University | Zhang Y.,University of Shanghai for Science and Technology | Wong M.-S.,Hong Kong Polytechnic University | Wong M.-S.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology Incubation
Life Sciences

Aims The study is designed to determine whether estrogen and vitamin D endocrine systems interact to regulate calcium (Ca) balance as well as changes in mRNA expression of epithelial Ca transport proteins involved in intestinal and renal Ca transport in aging animals in response to ovariectomy and low dietary Ca intake. Main methods Eleven-month-old female sham or ovariectomized (OVX) rats were divided into four groups and fed with either a low-Ca (LCD; 0.1% Ca, 0.65% P) or a high-Ca (HCD; 1.2% Ca, 0.65% P) diet for 12 weeks. Ca balance and mRNA expression of Ca transport proteins in the intestine and kidney from rats were systematically studied. Key findings OVX rats fed with LCD resulted in a negative Ca balance. LCD suppressed serum Ca in OVX but not sham rats, resulting in an induction of serum PTH and 1,25(OH)2D3 levels. The surge in serum 1,25(OH)2D3 levels in LCD-fed OVX rats was associated with an increase in mRNA expression of intestinal transient receptor potential cation channel (TRPV6) and calbindin D9k (CaBP9k) as well as renal vitamin D receptor (VDR), but such an induction was unable to restore Ca balance in vivo. In contrast, the negative Ca balance was associated with suppression of intestinal plasma membrane Ca pump (PMCA1b) and renal transient receptor potential cation channel (TRPV5), calbindin D28k (CaBP28k) and PMCA1b mRNA expression in aged OVX rats. Significance Negative Ca balance in aged female OVX rats is associated with estrogen-dependent and vitamin D-independent downregulation of epithelial Ca transport protein mRNA expression. © 2013 Elsevier Inc. Source

Gao Q.-G.,Hong Kong Polytechnic University | Chan H.-Y.,Hong Kong Polytechnic University | Man C.W.-Y.,Hong Kong Polytechnic University | Wong M.-S.,Hong Kong Polytechnic University | Wong M.-S.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology Incubation
Journal of Steroid Biochemistry and Molecular Biology

Recent studies indicated that both estren and Rg1 appear to be able to activate mitogen-activated protein kinase (MAPK) pathway in estrogen responsive cells. Rg1 could lead to MAPK activation through ligand-independent activation of estrogen receptor (ER), while estren could activate the Src-MAPK pathway in an ERE-independent manner. Thus, it is important to understand the mechanistic insights on the difference in transcriptional activation between estren and Rg1. The present study also addressed the differential abilities of Rg1 and estren in terms of the ability to activate ER and the ability to induce ER translocation in MCF-7 cells. Our data indicated that Rg1 could increase pS2 gene expression, and could recruit the co-activator steroid receptor co-activator-1 (SRC-1) to the pS2 promoter. Rg1 could also induce ERα nuclear translocation as well as ERα phosphorylation at Ser118 principally in the cytoplasm in MCF-7 cells. We deduced that estren induced ERE-dependent transcriptional activity and activated ERα at Ser118 occurred in the nucleus of MCF-7 cells. However, it was found to decrease pS2 gene expression and failed to induce the recruitment of SRC-1 to the pS2 promoter in MCF-7 cells. Our results suggest that the abilities of Rg1 and estren to regulate pS2 gene expression, to recruit co-activators as well as to induce sub-cellular distribution of ERα are dramatically different. © 2014 Elsevier Ltd. Source

Cheng J.,East China Normal University | Cheng J.,City University of Hong Kong | Gu Y.-J.,Hong Kong Polytechnic University | Cheng S.H.,City University of Hong Kong | And 2 more authors.
Journal of Biomedical Nanotechnology

Gold nanoparticles have been widely explored as cancer therapeutics and diagnostic agents in recent years. With their unique subcellular size and good biocompatibility, gold nanoparticles are a promising drug delivery vehicle. In this study, folic acid-coated gold nanoparticles conjugated with fluorophore FITC through amine terminated poly(ethylene glycol) were prepared and confocal microscopy together with bright-field differential interference contrast imaging data showed that folic acid-coated gold nanoparticles accumulated mainly in cytoplasm of primary human fibroblasts, without causing any observable cytotoxicity upon exposure for 48 hours. Through the further development of a drug delivery system that conjugates doxorubicin onto the surface of gold nanoparticles with a poly(ethylene glycol) spacer via an SMCC linker, we demonstrated that multidrug resistance in cancer cells can be significantly overcome by a combination of highly efficient cellular entry and enhanced cytotoxicity of Au-SMCC-DOX nanoconjugates, as revealed both by confocal microscopy imaging and cytotoxicity assay. The prepared Au-SMCC-DOX nanoconjugates demonstrated enhanced drug accumulation and retention in multidrug resistant hepG2-R cancer cells when it was compared with free doxorubicin, with a cytoplasm accumulation profile. The results indicated that gold nanoparticles are a kind of promising drug delivery vehicle with good biocompatibility and suitable for further applications in drug delivery for improved chemotherapy, especially for overcoming multidrug resistance. Copyright © 2013 American Scientific Publishers All rights reserved. Source

Discover hidden collaborations