Time filter

Source Type

Jing Y.,International Medical University | Jing Y.,State Key Laboratory of Antibody Medicine and Target Therapy | Jing Y.,National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering and Antibody | Jing Y.,Soochow University of China | And 32 more authors.
Cytotechnology | Year: 2014

In laboratory scale therapeutical protein production, cell clumps form typically in shake flasks, which hinders cell growth and decreases protein yield. To minimize clumps during the culture of Chinese hamster ovary cells, we employed the combination of two reagents, dextran sulfate (DS) and recombinant trypsin (r-trypsin). Our results showed that both DS and r-trypsin could diminish cell aggregation when adding them respectively, but clumps were still noticed obviously. In order to further mitigate cell agglomerate, a combination of 1.2 g/L DS and 8.0 mg/L r-trypsin was employed and no clumps were found under the bright field microscope. Strikingly, the highest viable cell density of combination group was increased from 5.12 × 106 to 7.13 × 106 cells/mL, while the integral of viable cells concentration was raised from 35.13 × 106 to 60.87 × 106 cells·days/mL, and the culture period was prolonged by 4 days. In addition, the antibody integrity was maintained in the combination group compared with that of the control. © 2014 Springer Science+Business Media Dordrecht.

Guo Y.,State Key Laboratory of Antibody Medicine and Target Therapy
Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology | Year: 2015

More than 100 years ago, Paul Ehrlich first proposed the "magic bullets" concept in which antibody targeting disease related antigen can fight against human disease. Since then, with the development of hybridoma technology for monoclonal antibody production and cancer serum therapy, immunotherapy based monoclonal antibody bas been used in chinical practice to treat hematological and solid tumor. Up to now, more than 20 recombinant antibody drugs were approved for cancer treatment worldwide. In recent years, the next-generation antibody drug, including immune checkpoint antagonists, bi-specific antibody, and antibody drug conjugates have successfully cured various malignant tumor. This review recalled the history of monoclonal antibody as potent immunotherapy of cancer firstly, and focused on the next-generation antibody drug's mechanism of action, construction strategies, and the side effects in clinic. Lastly, the future trend of anti-tumor antibody drug was also discussed. ©2015 Chin J Biotech, All rights reserved.

Loading State Key Laboratory of Antibody Medicine and Target Therapy collaborators
Loading State Key Laboratory of Antibody Medicine and Target Therapy collaborators