State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing

Laboratory, China

State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing

Laboratory, China

Time filter

Source Type

Yang G.,State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing | Yang G.,Guilin University of Technology | Ma W.,Guangzhou University | Ma W.,Huizhou Municipal Central Hospital | And 3 more authors.
Materials Science and Engineering C | Year: 2016

Poly(ethylene glycol) (PEG) and poly(vinyl pyrrolidone) (PVP) co-modified superparamagnetic iron oxide nanoparticles (SPIONs) (PEG/PVP-SPIONs), and PEG and poly(ethylene imine) (PEI) co-modified SPIONs (PEG/PEI-SPIONs) synthesized by thermal decomposition have been used as magnetic resonance imaging (MRI) contrast agents to label adipose-derived stem cells (ADSCs). Efficient cell labeling was achieved after incubation with PEG/PVP-SPIONs and PEG/PEI-SPIONs for 12 h, and the MRI of labeled cells was evaluated. The cell viability tests showed the low cytotoxicity of PEG/PVP-SPIONs and PEG/PEI-SPIONs. The cellular iron content incubated with PEG/PVP-SPIONs at a concentration of 25 μg/ml was 6.96 pg/cell, the cellular iron contents incubated with PEG/PEI-SPIONs at concentrations of 12 and 25 μg/ml were 20.16, 35.4 pg/cell, respectively. The SPIONs were located predominantly in the intracellular vesicles. The cellular iron oxide uptake was significantly high after incubation with PEG/PEI-SPIONs as compared with the commercial iron oxide agents (Feridex, Feridex@PLL, Resovist and Resovist@PLL) reported. This work demonstrates that PEG/PEI-SPIONs are the competent agents for the labeling of ADSCs. © 2016 Elsevier Ltd. All rights reserved.


Wang J.,State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing | Wang J.,Guilin University of Technology | Zhang B.,State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing | Zhang B.,Guilin University of Technology | And 4 more authors.
Materials Science and Engineering C | Year: 2015

Water-soluble superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in the mixture of poly(ethylene glycol) (PEG) and poly(ethylene imine) (PEI). The average sizes of the SPIONs are in the range of 6-12 nm, which could be tuned by adjusting the synthesis temperature and molecular weight of PEI. Benefiting from the coating of hydrophilic PEG and PEI, the resulted SPIONs showed excellent colloidal stability in deionized water and other physiological buffers. The XRD patterns indicate that the obtained SPIONs are magnetite. The PEG/PEI-SPIONs exhibited high r2/r1 ratio. In vivo magnetic resonance imaging (MRI) of the mouse brains after intravenous injection of the SPIONs showed their good contrast effect. Considering the facile fabrication process and excellent imaging performance of the water soluble PEG-SPIONs and PEG/PEI-SPIONs, it is believed that the SPIONs will find great potential in advanced MRI. ©2014 Elsevier B.V. All rights reserved.

Loading State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing collaborators
Loading State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing collaborators