Time filter

Source Type

Liu J.,Tsinghua University | Liu J.,State Environmental Protection Key Laboratory of Sources | Fung D.,University of California at Los Angeles | Jiang J.,Tsinghua University | And 2 more authors.
Indoor Air | Year: 2014

Ultrafine particle (UFP) emissions from three essential-oil-based mosquito repellent products (lemon eucalyptus (LE), natural insects (NI), and bite shield (BS)) were tested in a 386 l chamber at a high air exchange rate of 24/h with filtered laboratory air. Total particle number concentration and size distribution were monitored by a condensation particle counter and a scanning mobility particle sizer, respectively. UFPs were emitted from all three products under indoor relevant ozone concentrations (~ 17 ppb). LE showed a nucleation burst followed by a relatively stable and continuous emission while the other two products (NI and BS) showed episodic emissions. The estimated maximum particle emission rate varied from 5.4 × 109 to 1.2 × 1012 particles/min and was directly related to the dose of mosquito repellent used. These rates are comparable to those due to other indoor activities such as cooking and printing. The emission duration for LE lasted for 8-78 min depending on the dose applied while the emission duration for NI and BS lasted for 2-3 h. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Cheng Y.,Tsinghua University | Engling G.,National Tsing Hua University | He K.-B.,Tsinghua University | He K.-B.,State Environmental Protection Key Laboratory of Sources | And 6 more authors.
Atmospheric Chemistry and Physics | Year: 2013

Biomass burning, the largest global source of elemental carbon (EC) and primary organic carbon (OC), is strongly associated with many subjects of great scientific concern, such as secondary organic aerosol and brown carbon which exert important effects on the environment and on climate in particular. This study investigated the relationships between levoglucosan and other biomass burning tracers (i.e., water soluble potassium and mannosan) based on both ambient samples collected in Beijing and source samples. Compared with North America and Europe, Beijing was characterized by high ambient levoglucosan concentrations and low winter to summer ratios of levoglucosan, indicating significant impact of biomass burning activities throughout the year in Beijing. Comparison of levoglucosan and water soluble potassium (K+) levels suggested that it was acceptable to use K+ as a biomass burning tracer during summer in Beijing, while the contribution of fireworks to K + could be significant during winter. Moreover, the levoglucosan to K+ ratio was found to be lower during the typical summer period (0.21 ± 0.16) compared with the typical winter period (0.51 ± 0.15). Levoglucosan correlated strongly with mannosan (R2 = 0.97) throughout the winter and the levoglucosan to mannosan ratio averaged 9.49 ± 1.63, whereas levoglucosan and mannosan exhibited relatively weak correlation (R 2 = 0.73) during the typical summer period when the levoglucosan to mannosan ratio averaged 12.65 ± 3.38. Results from positive matrix factorization (PMF) model analysis showed that about 50% of the OC and EC in Beijing were associated with biomass burning processes. In addition, a new source identification method was developed based on the comparison of the levoglucosan to K+ ratio and the levoglucosan to mannosan ratio among different types of biomass. Using this method, the major source of biomass burning aerosol in Beijing was suggested to be the combustion of crop residuals, while the contribution from softwood burning was also non-negligible, especially in winter. © 2013 Author(s).

Zheng G.J.,Tsinghua University | Cheng Y.,Tsinghua University | He K.B.,Tsinghua University | He K.B.,State Environmental Protection Key Laboratory of Sources | And 3 more authors.
Atmospheric Measurement Techniques | Year: 2014

The Sunset semi-continuous carbon analyzer (SCCA) is an instrument widely used for carbonaceous aerosol measurement. Despite previous validation work, in this study we identified a new type of SCCA calculation discrepancy caused by the default multipoint baseline correction method. When exceeding a certain threshold carbon load, multipoint correction could cause significant total carbon (TC) underestimation. This calculation discrepancy was characterized for both sucrose and ambient samples, with two protocols based on IMPROVE (Interagency Monitoring of PROtected Visual Environments) (i.e., IMPshort and IMPlong) and one NIOSH (National Institute for Occupational Safety and Health)-like protocol (rtNIOSH). For ambient samples, the IMPshort, IMPlong and rtNIOSH protocol underestimated 22, 36 and 12% of TC, respectively, with the corresponding threshold being ∼ 0, 20 and 25 I1/4gC. For sucrose, however, such discrepancy was observed only with the IMPshort protocol, indicating the need of more refractory SCCA calibration substance. Although the calculation discrepancy could be largely reduced by the single-point baseline correction method, the instrumental blanks of single-point method were higher. The correction method proposed was to use multipoint-corrected data when below the determined threshold, and use single-point results when beyond that threshold. The effectiveness of this correction method was supported by correlation with optical data. © Author(s) 2014. CC Attribution 3.0 License.

Wang S.,Tsinghua University | Wang S.,State Environmental Protection Key Laboratory of Sources | Xing J.,U.S. Environmental Protection Agency | Zhao B.,Tsinghua University | And 2 more authors.
Journal of Environmental Sciences (China) | Year: 2014

Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control policies implemented recently in China through a modeling analysis. The sulfur dioxide (SO2) control policy during the 11th Five Year Plan period (2006-2010) had succeeded in reducing the national SO2 emission in 2010 by 14% from its 2005 level, which correspondingly reduced ambient SO2 and sulfate (SO4 2-) concentrations by 13%-15% and 8%-10% respectively over east China. The nitrogen oxides (NOx) control policy during the 12th Five Year Plan period (2011-2015) targets the reduction of the national NOx emission in 2015 by 10% on the basis of 2010. The simulation results suggest that such a reduction in NOx emission will reduce the ambient nitrogen dioxide (NO2), nitrate (NO3 -), 1-hr maxima ozone (O3) concentrations and total nitrogen deposition by 8%, 3%-14%, 2% and 2%-4%, respectively over east China. The application of new emission standards for power plants will further reduce the NO2, NO3 - 1-hr maxima O3 concentrations and total nitrogen deposition by 2%-4%, 1%-6%, 0-2% and 1%-2%, respectively. Sensitivity analysis was conducted to evaluate the inter-provincial impacts of emission reduction in Beijing-Tianjin-Hebei and the Yangtze River Delta, which indicated the need to implement joint regional air pollution control. © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.

Zhang L.,Tsinghua University | Wang S.X.,Tsinghua University | Wang S.X.,State Environmental Protection Key Laboratory of Sources | Wang L.,Tsinghua University | And 2 more authors.
Atmospheric Chemistry and Physics | Year: 2013

Continuous measurements of atmospheric mercury concentration and speciation play a key role in identifying mercury sources and its behavior in the atmosphere. In this study, speciated atmospheric mercury including gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) were continuously measured at Miyun, a rural site in Beijing, China, from December 2008 to November 2009. The average GEM, RGM and PBM concentrations were found to be 3.22 ± 1.74, 10.1 ± 18.8 and 98.2 ± 112.7 pgm-3, respectively, about 2-20 times higher than the background concentration of the Northern Hemisphere. The results indicated that atmospheric mercury concentrations in northern China were highly affected by anthropogenic emissions. The atmospheric mercury showed obvious seasonal variations, with the highest seasonal average GEM concentration in summer (3.48 ng m-3) and the lowest value in winter (2.66 ng m-3). In autumn and winter a diurnal variation of GEM was observed, with peak levels in the late afternoon till midnight. Most of the high RGM concentration values occurred in the afternoon of all seasons due to the higher oxidation. The PBM concentration was higher in early morning of all seasons because of the the temperature inversion that increases in depth as the night proceeds. The ratio of GEM to CO indicates that residential boilers play an important role in the elevation of GEM in winter. The ratio of RGM to O3 could be an indicator of the contribution of local primary sources. The ratio of PBM to PM2.5 reveals that the air mass from the east and southwest of the site in spring and summer carries more atmospheric mercury. The HYSPLIT back-trajectory analysis indicated that the monitoring site is affected by local, regional and interregional sources simultaneously during heavy pollution episodes. The results from the potential source contribution function (PSCF) model indicate that the atmospheric transport predominantly from the northwest contributes to the elevated atmospheric mercury in winter and autumn, while the North China Plain (NCP) region and the northern part of the Yangtze River Delta (YRD) region are the major source areas for mercury pollution in spring and summer. © 2013 Author(s).

Discover hidden collaborations