Entity

Time filter

Source Type


Fang G.,Chinese Research Academy of Environmental Sciences | Fang G.,State Environment Protection Key Laboratory of Regional Ecological Processes and Functions Assessment | Xiang B.,Chinese Research Academy of Environmental Sciences | Xiang B.,State Environment Protection Key Laboratory of Regional Ecological Processes and Functions Assessment | And 9 more authors.
Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering | Year: 2015

Identification of the high risk area of non-point source pollution has important practical significance to control non-point source pollution and improve the water environment quality. Lasahe River basin located in the Tibet Autonomous Region of China is important drinking-water source for Lhasa City, Linzhou County and Dangxiong County. Because the underdevelopment of industry and the less discharge of industrial pollutants in this area, non-point source pollution is the most important contributing factor for water pollution. Lhasa River basin is the region of agricultural production base with the densest population in the Tibet Autonomous Region. This study built the output risk model that includes rainfall, topography, and fertilization influence factor, identification the output risk region unit from basin non-point source pollution at all levels object. The risk probability of non-point source pollution was classed into five levels: lowest, lower, moderate, higher and highest. Data used in this study were mainly from remote sensing image, statistical yearbook, and the parameters in output risk model were collected from the literatures. The results showed that risk probability of non-point source pollution output in 1996 and 2010 was 50% and 46.3% respectively. 17.5% in 1996 and 12.6% in 2010 of the study area showed that risk probability of non-point source pollution was more than 70%. The risk probability of non-point source pollution was spatially heterogeneous, corresponding with the attributes of land use types. The areas with highest risk of non-point source pollution were concentrated in farmland, where agricultural activities strengthened, and concentrated in unused land with great ecological vulnerability and sensitivity to external interference. Areas with lowest and lower risk of non-point source pollution mainly distributed in grassland, which has relative stability and robustness. Our study also found that risk probability of non-point source pollution was closely related with slope, the risk enhanced as the slope increased, and moderate risk, higher risk and highest risk mainly distributed in the area with slope greater than 15 degree. Compared with 1996, the area that non-point source pollution degree of risk transformation from lowest and lower level to higher and highest level in 2010 was about 6674.3 km2. Lasahe basin non-point source pollution risk probability was medium risk level, and degree of risk decreased in the local scope. And the area of highest risk reduced, and the area of low risk increased, but the area of medium and higher risk had a tendency to increase. Land use change, agricultural production and water-soil erosion are the material cause of the basin non-point source pollution. Areas characterized by conversion from grassland to farmland and from grassland to unused land showed markedly changes in risk probability of non-point source pollution. These results would offer useful information for limiting non-point pollution and helping promote better water quality in the Lhasa River basin. The risk assessment of non-point source pollution provide an easy, verifiable, viable way to identify areas prone to non-point source pollution, supporting to design and apply adaptive management strategies. Therefore, it needs to strengthen the ecological environment comprehensive treatment results, tackle non-point source pollution in advance, formulate plans for the development of ecological agriculture, and build controlling non-point source pollution migration vegetation buffer. ©, 2015, Chinese Society of Agricultural Engineering. All right reserved. Source


Fang G.-L.,Chinese Research Academy of Environmental Sciences | Fang G.-L.,State Environment Protection Key Laboratory of Regional Ecological Processes and Functions Assessment | Xiang B.,Chinese Research Academy of Environmental Sciences | Xiang B.,State Environment Protection Key Laboratory of Regional Ecological Processes and Functions Assessment | And 8 more authors.
Chinese Journal of Applied Ecology | Year: 2014

This article investigated the spatiotemporal variation of landscape ecological risk in Dantu District of Zhenjiang City with statistical method based on the ETM remote sensing data in 2000 and 2005, and the TM remote sensing data in 2010, and quantitative index of regional ecological risk assessment was established with the employment of landscape index, so as to enhance the ecosystem management, prevent and reduce the regional ecological risk in southern Jiangsu with rapid economic development. The results showed that the fragmentations, divergence, and ecological losses of natural landscape types, such as forestland, wetland, waters, etc., were deteriorated with the expansion of built-up lands from 2000 to 2010. The higher ecological risk zone took up 5.7%, 9.0%, and 10.2% of the whole region in 2000, 2005, and 2010, respectively, which mainly distributed in the plain hilly region. During the study period, the area aggravating to the higher ecological risk zone was approximately 296.2 km2, 48% of the whole region. The ecological risk rose up in most of the region. The interference of rapid economic development to landscape patterns was even more intensive, with obvious spatial differences in ecological risk distribution. The measures of exploiting resources near the port, utilizing natural wetlands, constructing industrial parks, and rapid urbanization, etc., intensified the ecological risk and accelerated the conversion rate. Prompt strategies should be established to manage the ecological risk of this region. Source

Discover hidden collaborations