Entity

Time filter

Source Type

Stevens Point, PA, United States

News Article
Site: www.biosciencetechnology.com

Advances in genetic sequencing are uncovering emerging diseases in wildlife that other diagnostic tests can’t detect. In a study led by Duke University, researchers used a technique called whole-transcriptome sequencing to screen for blood-borne diseases in wild lemurs, distant primate cousins to humans. The animals were found to carry several strains or species of parasites similar to those that cause Lyme disease and other infections in humans. This is the first time these parasites have been reported in lemurs or in Madagascar, the only place on Earth where lemurs live in the wild outside of zoos and sanctuaries, the researchers report in the Jan. 27 issue of Biology Letters. The approach could pave the way for earlier, more accurate detection of future outbreaks of zoonotic diseases that move between animals and people. “We can detect pathogens we might not expect and be better prepared to deal with them,” said co-author Anne Yoder, director of the Duke Lemur Center. In 2012, Duke Lemur Center veterinarian Cathy Williams and colleagues started performing physical exams on lemurs in the rainforests surrounding a mine site in eastern Madagascar to help monitor the impacts of such activities on lemur health. “Lemur populations are becoming increasingly small and fragmented because of human activities like mining, logging and clearing forests to make way for cattle grazing and rice paddies,” Williams said. “If an infectious disease wipes out a lemur population it could be a huge blow to the species.” Researchers took small amounts of blood and tested them for evidence of exposure to known viruses and pathogens, but nothing turned up. The problem is that standard diagnostic tests tend to target known pathogens, Williams said. You can check for antibodies to certain viruses, or look for specific snippets of genetic material in an animal’s blood, “but you have to know what you’re looking for.” The end result is that new or exotic diseases often go undetected. And with hundreds of thousands of viral and bacterial species that lemurs and other mammals harbor still awaiting discovery, “we could be looking for anything,” Williams said. To cast a wider net they tried a new approach. Lead author Peter Larsen, senior research scientist at Duke, analyzed blood samples from six lemurs in two species, the indri and the diademed sifaka, both of which are considered critically endangered by the International Union for Conservation of Nature (IUCN). With advances in high-throughput sequencing, the ability to read genetic code rapidly, Larsen was able to look at all the gene readouts, or RNA transcripts, that were present in each animal -- an alphabet soup containing billions of nucleotide bases. The team found more than just lemur RNA in the animals’ blood. Using computer algorithms that compared the genetic material to sequences already catalogued in existing databases, they discovered several new types of parasites that had never been reported in lemurs. These included a new form of the protozoa responsible for babesiosis, a disease spread by bites from infected ticks, and a new kind of Borrelia closely related to the bacterium that causes Lyme disease. They also found the first known case in Madagascar of a bacterium called Candidatus Neoehrlichia, which can be deadly in humans. Further analyses revealed that the new types of Babesia and Borrelia they found didn’t begin in lemurs, but were likely introduced to Madagascar in infected pets and livestock such as cattle and then spilled over to lemurs. The researchers don’t yet know if the new parasites are actually dangerous to lemurs. But they caution that what is infecting lemurs could potentially infect people, too. Human health officials and veterinarians in Madagascar may want to consider screening their patients to see if any test positive for the same parasites, the researchers say. The majority of emerging infectious diseases that affect humans, including recent outbreaks of SARS, Ebola and bird flu, are zoonotic -- they can spread among wildlife, domestic animals and humans. “Next-generation sequencing will be an important tool to identify emerging pathogens, particularly vector-borne diseases,” said Barbara Qurollo, a research assistant professor at the N.C. State College of Veterinary Medicine who was not affiliated with the study. “A clinician cannot treat an infection that he or she does not know exists,” said veterinarian and infectious diseases researcher Edward Breitschwerdt, also of the N.C. State College of Veterinary Medicine. “The kindest form of therapy is an accurate diagnosis.”


In a study led by Duke University, researchers used a technique called whole-transcriptome sequencing to screen for blood-borne diseases in wild lemurs, distant primate cousins to humans. The animals were found to carry several strains or species of parasites similar to those that cause Lyme disease and other infections in humans. This is the first time these parasites have been reported in lemurs or in Madagascar, the only place on Earth where lemurs live in the wild outside of zoos and sanctuaries, the researchers report in the Jan. 27, 2016 issue of Biology Letters. The approach could pave the way for earlier, more accurate detection of future outbreaks of zoonotic diseases that move between animals and people. "We can detect pathogens we might not expect and be better prepared to deal with them," said co-author Anne Yoder, director of the Duke Lemur Center. In 2012, Duke Lemur Center veterinarian Cathy Williams and colleagues started performing physical exams on lemurs in the rainforests surrounding a mine site in eastern Madagascar to help monitor the impacts of such activities on lemur health. "Lemur populations are becoming increasingly small and fragmented because of human activities like mining, logging and clearing forests to make way for cattle grazing and rice paddies," Williams said. "If an infectious disease wipes out a lemur population it could be a huge blow to the species." Researchers took small amounts of blood and tested them for evidence of exposure to known viruses and pathogens, but nothing turned up. The problem is that standard diagnostic tests tend to target known pathogens, Williams said. You can check for antibodies to certain viruses, or look for specific snippets of genetic material in an animal's blood, "but you have to know what you're looking for." The end result is that new or exotic diseases often go undetected. And with hundreds of thousands of viral and bacterial species that lemurs and other mammals harbor still awaiting discovery, "we could be looking for anything," Williams said. To cast a wider net they tried a new approach. Lead author Peter Larsen, senior research scientist at Duke, analyzed blood samples from six lemurs in two species, the indri and the diademed sifaka, both of which are considered critically endangered by the International Union for Conservation of Nature (IUCN). With advances in high-throughput sequencing, the ability to read genetic code rapidly, Larsen was able to look at all the gene readouts, or RNA transcripts, that were present in each animal—an alphabet soup containing billions of nucleotide bases. The team found more than just lemur RNA in the animals' blood. Using computer algorithms that compared the genetic material to sequences already catalogued in existing databases, they discovered several new types of parasites that had never been reported in lemurs. These included a new form of the protozoa responsible for babesiosis, a disease spread by bites from infected ticks, and a new kind of Borrelia closely related to the bacterium that causes Lyme disease. They also found the first known case in Madagascar of a bacterium called Candidatus Neoehrlichia, which can be deadly in humans. Further analyses revealed that the new types of Babesia and Borrelia they found didn't begin in lemurs, but were likely introduced to Madagascar in infected pets and livestock such as cattle and then spilled over to lemurs. The researchers don't yet know if the new parasites are actually dangerous to lemurs. But they caution that what is infecting lemurs could potentially infect people, too. Human health officials and veterinarians in Madagascar may want to consider screening their patients to see if any test positive for the same parasites, the researchers say. The majority of emerging infectious diseases that affect humans, including recent outbreaks of SARS, Ebola and bird flu, are zoonotic—they can spread among wildlife, domestic animals and humans. "Next-generation sequencing will be an important tool to identify emerging pathogens, particularly vector-borne diseases," said Barbara Qurollo, a research assistant professor at the N.C. State College of Veterinary Medicine who was not affiliated with the study. "A clinician cannot treat an infection that he or she does not know exists," said veterinarian and infectious diseases researcher Edward Breitschwerdt, also of the N.C. State College of Veterinary Medicine. "The kindest form of therapy is an accurate diagnosis." More information: Blood transcriptomes reveal novel parasitic zoonoses circulating in Madagascar's lemurs, Biology Letters, rsbl.royalsocietypublishing.org/lookup/doi/10.1098/rsbl.2015.0829


News Article
Site: www.asminternational.org

Materials scientists at Pennsylvania State University, State College, created a polymer dielectric material with high energy density, high power density, and excellent charge-discharge efficiency for electric and hybrid vehicle use. The key is a unique 3D sandwich-like structure that protects the dense electric field in the polymer/ceramic composite from dielectric breakdown. "Polymers are ideal for energy storage for transportation due to their light weight, scalability and high dielectric strength," says Qing Wang, professor of materials science and engineering. "However, the existing commercial polymer used in hybrid and electric vehicles, called BOPP, cannot stand up to the high operating temperatures without considerable additional cooling equipment. This adds to the weight and expense of the vehicles." Researchers had to overcome two problems to achieve their goal. In normal 2D polymer films such as BOPP, increasing the dielectric constant, the strength of the electric field, is in conflict with stability and charge-discharge efficiency. The higher the field, the more likely a material is to leak energy in the form of heat. Researchers originally attacked this problem by mixing different materials while trying to balance competing properties in a 2D form. While this increased the energy capacity, they found that the film broke down at high temperatures when electrons escaped the electrodes and were injected into the polymer, which caused an electric current to form. "That's why we developed this sandwich structure," Wang says. "We have the top and bottom layers that block charge injection from the electrodes. Then in the central layer we can put all of the high dielectric constant ceramic/polymer filler material that improves the energy and power density." The outer layers, composed of boron nitride nanosheets in a polymer matrix, are excellent insulators. While the central layer is a high dielectric constant material called barium titanate. "We show that we can operate this material at high temperature for 24 hours straight over more than 30,000 cycles and it shows no degradation," Wang says. A comparison of BOPP and the sandwich structure nanocomposite, termed SSN-x, in which the x refers to the percentage of barium titanate nanocomposites in the central layer, shows that at 150°C, SSN-x has essentially the same charge-discharge energy as BOPP at it typical operating temperature of 70°C. However, SSN-x has several times the energy density of BOPP, which makes SSN-x highly preferable for electric vehicle and aerospace applications as an energy storage device due to the ability to reduce the size and weight of the electronics significantly while improving system performance and stability. The elimination of bulky and expensive cooling equipment required for BOPP is an additional bonus. "Our next step is to work with a company or with more resources to do processability studies to see if the material can be produced at a larger scale at a reasonable cost," Wang says. "We demonstrated the materials performance in the lab. We are developing a number of state-of-the-art materials working with our theory colleague Long-Qing Chen in our department. Because we are dealing with a 3D space, it is not just selecting the materials, but how we organize the multiple nanosized materials in specific locations. Theory helps us design materials in a rational fashion." In addition to Professors Wang and Chen, contributors include post-doctoral scholar Qi Li, Ph.D. student Feihua Liu, Matthew Gadinski, a former Ph.D. student now at DOW Chemical, Guangzu Zhang, a post-doctoral scholar, all in Wang's lab, and Tiannan Yang, a graduate student in Chen's group. This work was supported by the U.S. Office of Naval Research. Image caption — Boron nitride nanosheets (blue and white atoms) act as insulators to protect a barium nitrate central layer (green and purple atoms) for high temperature energy storage. Courtesy of Wang Lab/Penn State.


Okajima S.,State College | Okajima H.,Pennsylvania State University
Energy Economics | Year: 2013

This paper estimates elasticities of Japanese residential price electricity from 1990 to 2007. The first difference generalized method of moment estimator is employed to avoid dynamic panel bias, which is not considered in most previous studies. The results show that while short-run elasticities are similar to those in previous studies, long-run elasticities are significantly lower in our study. We also find that the price elasticity of Japanese residential electricity consumption is notably affected by income inequality and severe weather. Based on these results, we provide some insights to tailor environmental taxation so as to effectively attain the Kyoto Protocol. © 2013 Elsevier B.V.


Skulas-Ray A.C.,Pennsylvania State University | Kris-Etherton P.M.,Pennsylvania State University | Harris W.S.,University of South Dakota | Vanden Heuvel J.P.,Pennsylvania State University | And 2 more authors.
American Journal of Clinical Nutrition | Year: 2011

Background: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to reduce cardiovascular mortality at a dose of ≈1 g/d. Studies using higher doses have shown evidence of reduced inflammation and improved endothelial function. Few studies have compared these doses. Objective: The objective of this study was to compare the effects of a nutritional dose of EPA+DHA (0.85 g/d) with those of a pharmaceutical dose (3.4 g/d) on serum triglycerides, inflammatory markers, and endothelial function in healthy subjects with moderately elevated triglycerides. Design: This was a placebo-controlled, double-blind, randomized, 3-period crossover trial (8 wk of treatment, 6 wk of washout) that compared the effects of 0.85 and 3.4 g EPA+DHA/d in 23 men and 3 postmenopausal women with moderate hypertriglyceridemia (150-500 mg/dL). Results: The higher dose of EPA+DHA lowered triglycerides by 27% compared with placebo (mean ± SEM: 173 ± 17.5 compared with 237 ± 17.5 mg/dL; P = 0.002), whereas no effect of the lower dose was observed on lipids. No effects on cholesterol (total, LDL, and HDL), endothelial function [as assessed by flow-mediated dilation, peripheral arterial tonometry/EndoPAT (Itamar Medical Ltd, Caesarea, Israel), or Doppler measures of hyperemia], inflammatory markers (interleukin-1β, interleukin-6, tumor necrosis factor-α, and high-sensitivity C-reactive protein), or the expression of inflammatory cytokine genes in isolated lymphocytes were observed. Conclusion: The higher dose (3.4 g/d) of EPA+DHA significantly lowered triglycerides, but neither dose improved endothelial function or inflammatory status over 8 wk in healthy adults with moderate hypertriglyceridemia. The trial was registered at clinicaltrials. gov as NCT00504309. © 2011 American Society for Nutrition.

Discover hidden collaborations