Stanford, CA, United States
Stanford, CA, United States

Leland Stanford Junior University, or more commonly Stanford University, is a private research university in Stanford, California, and one of the world's most prestigious institutions, with the highest undergraduate selectivity and the top position in numerous surveys and measures in the United States.Stanford was founded in 1885 by Leland Stanford, former governor of and U.S. senator from California and leading railroad tycoon, and his wife, Jane Lathrop Stanford, in memory of their only child, Leland Stanford, Jr., who had died of typhoid fever at age 15 the previous year. Stanford was opened on October 1, 1891 as a coeducational and non-denominational institution. Tuition was free until 1920. The university struggled financially after Leland Stanford's 1893 death and after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, Provost Frederick Terman supported faculty and graduates' entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley. By 1970, Stanford was home to a linear accelerator, and was one of the original four ARPANET nodes .Stanford is located in northern Silicon Valley near Palo Alto, California. The University's academic departments are organized into seven schools, with several other holdings, such as laboratories and nature reserves, located outside the main campus. Its 8,180-acre campus is one of the largest in the United States. The University is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.Stanford's undergraduate program is the most selective in the country with an acceptance rate of 5.07% for the 2018 Class. Students compete in 36 varsity sports, and the University is one of two private institutions in the Division I FBS Pacific-12 Conference. It has gained 105 NCAA team championships, the second-most for a university, 465 individual championships, the most in Division I, and has won the NACDA Directors' Cup, recognizing the university with the best overall athletic team achievement, every year since 1994-1995.Stanford faculty and alumni have founded many companies including Google, Hewlett-Packard, Nike, Sun Microsystems, and Yahoo!, and companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world. Fifty-nine Nobel laureates have been affiliated with the University, and it is the alma mater of 30 living billionaires and 17 astronauts. Stanford has produced a total of 18 Turing Award laureates, the highest in the world for any one institution. It is also one of the leading producers of members of the United States Congress. Wikipedia.


Time filter

Source Type

A medical tool for use with an endoscopic capsule includes: a jaw assembly configured to maintain the endoscopic capsule at a certain position or within a range of positions relative to the jaw assembly while the endoscopic capsule is inside a bodily lumen, the jaw assembly having a first jaw and a second jaw, the first jaw having a first portion and a second portion that is opposite from the first portion; and a control configured to move at least one of the first jaw and the second jaw from a first configuration in which the first and the second jaws are spaced at a first distance, to a second configuration in which the first and the second jaws are spaced at a second distance that is less than the first distance.


Patent
Stanford University | Date: 2016-09-30

Apparatus, systems, and methods are provided for performing a biopsy within a patients lung using an access sheath or catheter including a distal portion sized for introduction into an airway of a lung. An ultrasound imaging device is deployable from the distal portion for imaging tissue adjacent the body lumen, and a needle or other biopsy may be advanced from the distal portion into surrounding tissue, e.g., to obtain a tissue sample.


Patent
Stanford University | Date: 2016-08-12

The present application pertains generally to medical systems and methods for creation of an autologous tissue valves within a mammalian body. In some embodiments, a system for creating an endoluminal valve from a blood vessel wall is provided. The system includes a tubular assembly having a longitudinal axis, a proximal end, a distal portion with a distal end, and a first lumen extending from the proximal end to a distal port located proximate the distal portion. The distal portion can have a supporting surface that extends in a longitudinal direction and is offset from a surface of the tubular assembly proximal the distal port. The system can further include a tissue dissection probe disposed within the first lumen.


Patent
Stanford University | Date: 2016-08-12

The present application pertains generally to medical systems and methods for creation of an autologous tissue valves within a mammalian body. In some embodiments, a system for creating an endoluminal valve from a blood vessel wall is provided. The system includes a tubular assembly having a longitudinal axis, a proximal end, a distal portion with a distal end, and a first lumen extending from the proximal end to a distal port located proximate the distal portion. The distal portion can have a supporting surface that extends in a longitudinal direction and is offset from a surface of the tubular assembly proximal the distal port. The system can further include a tissue dissection probe disposed within the first lumen.


Patent
Stanford University | Date: 2016-08-11

A brain machine interface (BMI) for improving a performance of a subject is provided. The BMI has two decoders that act in real-time and in parallel to each other. The first decoder is for intention execution of a subjects intention. The second decoder is for error detection in a closed-loop error fashion with the first detector and to improve the performance of the first detector. Embodiments of this invention may enable an entirely new way to substantially increase the performance and robustness, user experience, and ultimately the clinical viability of BMI systems.


Patent
Stanford University | Date: 2016-04-11

Stimulation of target cells using light, e.g., in vivo or in vitro, is implemented using a variety of methods and devices. One example involves a vector for delivering a light-activated molecule comprising a nucleic acid sequence that codes for light-activated molecule. The light-activated molecule includes a modification to a location near the all-trans retinal Schiff base, e.g., to extends the duration time of the open state. Other aspects and embodiments are directed to systems, methods, kits, compositions of matter and molecules for ion channels or pumps or for controlling currents in a cell (e.g., in in vivo and in vitro environments).


Patent
Stanford University | Date: 2016-11-29

Stimulation of target cells using light, e.g., in vivo or in vitro, is implemented using a variety of methods and devices. One example involves a vector for delivering a light-activated molecule comprising a nucleic acid sequence that codes for light-activated molecule. The light-activated molecule includes a modification to a location near the all-trans retinal Schiff base, e.g., to extends the duration time of the open state. Other aspects and embodiments are directed to systems, methods, kits, compositions of matter and molecules for ion channels or pumps or for controlling currents in a cell (e.g., in in vivo and in vitro environments).


A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.


Patent
Stanford University | Date: 2016-11-09

Mixed allergen compositions of two or more different allergens are provided. In some instances, the mixed allergen compositions include: a nut allergen; an animal allergen; and at least one of: a non-nut plant allergen; a biotic agent; and a vitamin Also provided are methods of administering the mixed allergen compositions to a subject. The mixed allergen compositions find use in a variety of applications, including health maintenance, immune balance, gut balance, immune support, health improvement and therapeutic applications.


Patent
Stanford University | Date: 2016-03-07

The present invention concerns the enhancement of the osteogenic potential of bone graft by ex vivo treatment with a Wnt polypeptide, such as a liposomal Wnt polypeptide.


Patent
Stanford University and Office of Technology Transfer | Date: 2015-04-24

Novel human interleukin-2 (IL-2) muteins or variants thereof are provided. In particular, provided are IL-2 muteins that have an increased binding capacity for IL-2RP receptor and a decreased binding capacity for IL-2R_(c )receptor, as compared to wild-type IL-2. Such IL-2 muteins are useful, for example, as IL-2 partial agonist and antagonists in applications where reduction or inhibition of one or more IL-2 and/or IL-15 functions is useful (e.g., in the treatment of graft versus host disease (GVHD) and adult T cell leukemia). Also provided are nucleic acids encoding such IL-2 muteins, methods of making such IL-2 muteins, pharmaceutical compositions that include such IL-2 muteins and methods of treatment using such pharmaceutical compositions.


Patent
Stanford University | Date: 2016-09-07

A variety of methods, devices and compositions are implemented for light-activated molecules. One such method is implemented for generating secondary messengers in a cell. A nucleotide sequence for expressing a chimeric light responsive membrane protein (e.g., rhodopsin) is modified with one or more heterologous receptor subunits {e.g., an adrenergic receptor (alpha1, Beta2)}. The light responsive membrane protein is expresses in a cell for producing a secondary messenger in response to light.


Patent
Stanford University | Date: 2016-09-02

Compositions and methods are provided for an O_(2 )tolerant FeFe hydrogenase. The hydrogenases of the invention comprise specific amino acid substitutions relative to the native, or wild-type enzymes.


Compositions and methods for modulating innate and adaptive immunity and for use in immunotherapy are disclosed. In particular, the invention relates to novel ganciclovir derivatives and methods of using them for the treatment of immune-related disorders, including inflammation, autoimmunity, and infections, and neurological disorders, and cancer.


Anti-SIRP antibodies, including multi-specific anti-SIRP antibodies, are provided, as are related compositions and methods. The antibodies of the disclosure bind to SIRP and can block the interaction of CD47 on one cell with SIRP on a phagocytic cell. Antibodies that are bispecific for SIRP and a second antigen are termed Bi-specific Macrophage Enhancing (BiME) antibodies and have emergent properties. The subject anti-SIRP antibodies find use in various therapeutic methods. Embodiments of the disclosure include isolated antibodies and derivatives and fragments thereof, pharmaceutical formulations comprising one or more of the anti-SIRP antibodies; and cell lines that produce the antibodies. Also provided are amino acid sequences of exemplary anti-SIRP antibodies.


Patent
Stanford University | Date: 2016-07-21

The present invention features compositions and methods relating to tRNA-derived small RNAs (tsRNAs). Provided herein are oligonucleotide compositions that are complementary to tsRNAs, in particular leuCAGtsRNA, and methods of using the oligonucleotides for the regulation of respective tsRNA. Further provided are methods of inducing apoptosis through the inhibition of leuCAGtsRNA.


Patent
Stanford University | Date: 2016-01-20

The compositions of the present disclosure provide novel fluorogenic probes for use in the specific imaging and detection of mycobacteria species, and in particular -lactam-antibiotic resistant. Specificity for mycobacteria is conferred on these probes by incorporating a moiety that specifically targets the unique trapping mechanism of the DprE1 found in in mycobacteria. Accordingly, only Mycobacteria species that express both a -lactamase and DprE1 enable both the activation of the caged fluorescent probe, and the affixing of the released fluorescent probes to the bacteria cells through the functioning reduction-covalent binding mechanism. Advantageously, such a probe is able, at its most sensitive, to allow single mycobacterium detection.


Patent
Siteone Therapeutics, Inc. and Stanford University | Date: 2015-04-09

Provided herein are compounds, pharmaceutical compositions comprising the compounds, and methods of using the compounds and compositions in treating conditions associated with voltage-gated sodium channel function, for example conditions associated with pain. The compounds are 10,11-modified saxitoxins. The compounds are optionally additionally modified at carbon 13. In certain embodiments, the 10,11-modified saxitoxins are of Formula I: where R^(1), R^(2 )and R^(3 )are as described herein. Also provided herein are methods of treating pain in a mammal comprising administering an effective treatment amount of a 10,11 modified saxitoxin or composition to a mammal. In an embodiment, the mammal is a human.


Patent
Stanford University | Date: 2015-04-17

Humanized or chimeric anti-CD99 monoclonal antibodies are provided. The antibodies bind to and neutralize human CD99, and find use in various therapeutic methods. Embodiments of the invention include isolated antibodies and derivatives and fragments thereof, pharmaceutical formulations comprising one or more of the humanized or chimeric anti-CD99 monoclonal antibodies; and cell lines that produce these monoclonal antibodies. Also provided are amino acid sequences of the antibodies.


Patent
Stanford University | Date: 2016-09-23

Methods are provided for activating dormant ovarian primordial follicles in a mammal to promote development to preovulatory follicles.


Patent
Stanford University | Date: 2016-10-25

The present disclosure provides opsins, including variant opsins with increased activity and/or increased trafficking to the plasma membrane. The opsins are useful in therapeutic and screening applications, which are also provided.


Patent
Stanford University | Date: 2016-11-16

Variant IL-13 polypeptides are provided, which are engineered to have one or more of the following properties: (a) altered affinity for IL-13R2, relative to the native human IL-13 protein; (b) altered affinity for IL-13R1 relative to the native human IL-13 protein; (c) a disruption in the binding site for IL-4R relative to the native human IL-13 protein.


Patent
Stanford University | Date: 2016-12-09

Devices and methods for preventing tracheal aspiration as described, where a cuff assembly having an inflatable member with an inflation tube fluidly coupled may be placed over a proximal end of an endotracheal tube or laryngeal mask and inserted into the patient trachea with the endotracheal tube or separately after the endotracheal tube has already been positioned. In either case, the inflatable member may be positioned distal (or inferior) to the vocal cords and proximal to the endotracheal balloon via a delivery instrument which automatically positions the balloon in proximity to the vocal cords.


A power transmitter is provided that can include a microwave cavity resonant at a desired operating frequency, a hexagonal mesh top to leak evanescent fields out of the cavity, and a plurality of orthogonal monopole feeds with 90 degrees phase differences creating circularly polarized waves. The power transmitter can be configured to transmit energy to a wireless device implanted in an animal passing through the evanescent fields. Implantable devices are also described which can receive wireless energy from the power transmitter and stimulate the animals (e.g., optogenetic or electrical stimulation).


Patent
Stanford University | Date: 2016-08-03

Formulations and methods of use thereof that relate to biocompatible delivery of stabilized porphyrin complexes are provided. Formulations may include microparticles comprising the porphyrin complex, wherein the porphyrin active agent is admixed or coated with a pharmaceutically acceptable stabilizer.


Patent
Stanford University | Date: 2016-07-15

The present invention provides a clinically applicable method of stem cell transplantation that facilitates engraftment and reconstitutes immunocompetence of the recipient without requiring radiotherapy or chemotherapy, and without development of GVHD or graft rejection. Aspects of the present invention are based on the discovery that the depletion of the endogenous stem cell niche facilitates efficient engraftment of stem cells into that niche. In particular, the present invention combines the use of selective ablation of endogenous stem cells, in combination with the administration to the recipient of exogenous stem cells, resulting in efficient, long-term engraftment and tolerance.


We provide improved maximum likelihood expectation maximization (MLEM) joint estimation of emission activity and photon attenuation from positron emission tomography (PET) data. Lines of response (LOR) are divided along their length into cells having equal length. MLEM computations assume all intersections between LOR cells and voxels have an intersection length of the LOR cell length. This way of discretizing the problem has the significant advantage of leading to MLEM update equations that have a closed form exact solution, which is important for fast, accurate and robust estimation.


Patent
Stanford University | Date: 2016-08-30

A battery includes an anode, a cathode, and an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes a polymer including dynamic bonds.


Patent
Stanford University | Date: 2015-05-20

Grasping devices and mechanisms are provided capable of grasping onto flat or curved surfaces repeatably and releasably using synthetic dry adhesives. Applications of these devices can be found in a large variety of robotic applications.


Patent
Stanford University | Date: 2016-10-31

Processing techniques of volumetric anatomic and vector field data from volumetric phase-contrast MRI on a magnetic resonance imaging (MRI) system are provided to evaluate the physiology of the heart and vessels. This method includes the steps of: (1) correcting for phase-error in the source data, (2) visualizing the vector field superimposed on the anatomic data, (3) using this visualization to select and view planes in the volume, and (4) using these planes to delineate the boundaries of the heart and vessels so that measurements of the heart and vessels can be accurately obtained.


Patent
Stanford University | Date: 2016-07-07

Methods, compositions and kits for determining the developmental potential of one or more embryos or pluripotent cells and/or the presence of chromosomal abnormalities in one or more embryos or pluripotent cells are provided. These methods, compositions and kits find use in identifying embryos and oocytes in vitro that are most useful in treating infertility in humans.


Patent
Stanford University | Date: 2016-10-14

A method for measuring ammonia in a blood sample may involve positioning the blood sample in proximity with an ammonia gas sensor, generating a current with the ammonia gas sensor in response to ammonia gas released from the blood sample, and measuring the current generated by the ammonia gas sensor, using a current measurement member coupled with the ammonia gas sensor. A device for measuring an ammonia level in a blood sample may include a blood sample containment member, an ammonia gas sensor coupled with the blood sample containment member, and a current measurement member coupled with the ammonia gas sensor. The method and device may be used to measure an ammonia level in a blood sample as small as one drop of blood, or approximately 0.05 mL of blood.


According to one aspect, the disclosure is directed to an example embodiment in which a circuit-based arrangement includes a circuit-based substrate securing a channel, with an effective width that is not limited by the Debye screening length, along a surface of the substrate. A pair of reservoirs are included in or on the substrate and configured for containing and presenting a sample having bio-molecules for delivery in the channel. A pair of electrodes electrically couple a charge in the sample to enhance ionic current flow therein (e.g., to overcome the electrolyte screening), and a sense electrode is located along the channel for sensing a characteristic of the biological sample by using the electrostatic interaction between the enhanced ionic current flow of the sample and the sense electrode. Actual detection occurs by using a charge-signal processing circuit to process the sensed charge signal and, therefrom, provide an output indicative of a signature for the bio-molecules delivered in the channel.


Methods, kits, devices, and computer systems are provided for obtaining an NSCLC marker level representation for an individual with non small cell lung carcinoma (NSCLC); and/or for providing a prognosis for an individual with NSCLC. The methods can include measuring expression levels, in a biological sample, of 2 or more NSCLC markers selected from: MAD2L1, GINS1, SLC2A1, KRT6A, FCGRT, TNIK, BCAM, KDM6A, and FAIM3; calculating an NSCLC marker level representation based on the measured expression levels; comparing the NSCLC marker level representation of the individual to a reference marker level representation; providing a prognosis based on the comparison; and/or generating a report that includes at least one of: (i) an NSCLC marker level representation, (ii) an NSCLC marker level representation and a reference NSCLC marker level representation, (iii) a prognosis, and (iv) guidance to a clinician as to a treatment recommendation based on the prognosis.


Patent
Stanford University | Date: 2015-05-04

Techniques for a motion tracing device using radio frequency signals are presented. The motion tracing device utilizes radio frequency signals, such as WiFi to identify moving objects and trace their motion. Methods and apparatus are defined that can measure multiple WiFi backscatter signals and identify the backscatter signals that correspond to moving objects. In addition, motion of a plurality of moving objects can be detected and traced for a predefined duration of time.


Patent
Stanford University | Date: 2016-08-05

An X-ray detector array includes a scintillator that converts input X-ray radiation to secondary optical radiation output from the scintillator, a first telecentric micro lens array that array receives the secondary optical radiation, a phase coded aperture, where the first telecentric micro lens array directs the secondary optical radiation on the phase coded aperture, a second telecentric micro lens array, where the secondary optical radiation output from the phase coded array is directed to the second telecentric micro lens array, a patterned grating mask, where the second telecentric micro lens array directs the optical beam on the patterned mask, and a photodetector array, where the patterned mask outputs the optical beam in a pattern according to the patterned mask to the photodetector array, where the photodetector array outputs a signal, where a photon fringe pattern is imaged and sampled in the wavelength domain of the radiation from the scintillator.


Human somatic cells obtained from individuals with a genetic heart condition are reprogrammed to become induced pluripotent stem cells (iPS cells), and differentiated into cardiomyocytes for use in analysis, screening programs, and the like.


Patent
Stanford University and Stichting Voor Fundamenteel Onderzoek Der Materie | Date: 2015-04-22

In one aspect, a cathodoluminescence (CL) spectroscopic tomography device includes a sample stage to support a sample. An electron beam source scans an electron beam over the sample to yield light emission by the sample. A reflective element directs the light emission by the sample to a light detector. A controller controls operation of the sample stage, the electron beam source, and the light detector. In one aspect, stage a CL spectroscopic tomography device includes an electron beam source which directs an electron beam at an object to yield an emission by the object. A detector detects the emission. A controller receives information from the detector related to the detected emission. The controller derives a two-dimensional (2D) CL map from the information related to the detected emission, and derives a three-dimensional (3D) CL tomogram from the 2D CL map.


Patent
Stanford University | Date: 2016-12-05

A method for measuring ammonia in a blood sample may involve positioning the blood sample in proximity with an ammonia gas sensor, generating a current with the ammonia gas sensor in response to ammonia gas released from the blood sample, and measuring the current generated by the ammonia gas sensor, using a current measurement member coupled with the ammonia gas sensor. A device for measuring an ammonia level in a blood sample may include a blood sample containment member, an ammonia gas sensor coupled with the blood sample containment member, and a current measurement member coupled with the ammonia gas sensor. The method and device may be used to measure an ammonia level in a blood sample as small as one drop of blood, or approximately 0.05 mL of blood.


Patent
Stanford University | Date: 2016-09-23

Cellular markers indicating a poor prognosis for ovarian cancer patients are disclosed. In particular, the invention relates to methods utilizing the frequency of a subset of cells in ovarian tumor tissue expressing vimentin, cMyc, or HE4, or any combination thereof, to predict an ovarian cancer patient will relapse.


Patent
Stanford University | Date: 2016-06-28

Disclosed is a method to achieve digital quantification of DNA (i.e., counting differences between identical sequences) using direct shotgun sequencing followed by mapping to the chromosome of origin and enumeration of fragments per chromosome. The preferred method uses massively parallel sequencing, which can produce tens of millions of short sequence tags in a single run and enabling a sampling that can be statistically evaluated. By counting the number of sequence tags mapped to a predefined window in each chromosome, the over- or under-representation of any chromosome in maternal plasma DNA contributed by an aneuploid fetus can be detected. This method does not require the differentiation of fetal versus maternal DNA. The median count of autosomal values is used as a normalization constant to account for differences in total number of sequence tags is used for comparison between samples and between chromosomes.


Patent
GlassPoint Solar Inc. and Stanford University | Date: 2016-03-07

Techniques for subsurface thermal energy storage of heat generated by concentrating solar power enable smoothing of available energy with respect to daily and/or seasonal variation. Solar thermal collectors produce saturated steam that is injected into a producing or wholly/partially depleted oil reservoir that operates as a heat storage reservoir. Some of the saturated steam generated by the collectors is optionally used to generate electricity. Heat is withdrawn from the reservoir as saturated steam and is used to operate an active thermal recovery project (such as a producing thermally enhanced oil reservoir) and/or to generate electricity. Withdrawn heat is optionally augmented by heat produced by firing natural gas. The reservoir is optionally one that has been used for thermally enhanced oil recovery and thus is already warm, minimizing heat losses.


Patent
Stanford University | Date: 2015-05-28

Methods and devices for conducting high-speed, high-resolution imaging of large intact tissue samples are provided. Aspects of the methods include placing a sample in an optically homogenous sample manipulation component, performing a calibration procedure to align a light sheet and a detection focal plane at a plurality of locations within the sample, and performing an imaging procedure on the sample to collect an image from each location. The collected images are reconstructed to form a three-dimensional image of the sample. Devices for carrying out the steps of the methods are also provided.


Patent
Stanford University | Date: 2015-03-19

Methods and compositions are provided for editing the genome of a cell without the use of an exogenously supplied nuclease. Aspects of the methods include contacting a cell with a targeting vector comprising nucleic acid sequence to be integrated into the target locus, where the cell is not also contacted with a nuclease. In addition, reagents, devices and kits thereof that find use in practicing the subject methods are provided.


Patent
Stanford University | Date: 2016-08-20

The present invention provides compositions and methods for biosynthetically producing podophyllotoxin intermediates and derivatives including enzymes and their equivalents involved in the biosynthetic production of podophyllotoxin intermediates and derivatives.


Described is a locomotive implant for usage within a predetermined magnetic field. In one embodiment magnetohydrodynamics is used to generate thrust with a plurality of electrodes. In another embodiment, asymmetric drag forces are used to generate thrust.


Patent
Stanford University | Date: 2016-03-24

Methods are known for implementing general optical functions using wave splitters. However, these methods rely on these wave splitters having maximal extinction ratio, which is difficult to achieve in practice. The present invention provides methods for automatically adjusting wave splitters to provide maximal extinction ratio.


Patent
Stanford University | Date: 2016-07-28

Embodiments in accordance with the present disclosure include apparatuses, devices, and methods. For example, an apparatus includes an electronic force sensor having a first opposing electrode and a second opposing electrode. The first and second opposing electrodes are configured to generate an output indicative of a force applied to the electronic force sensor. The electronic force sensor further includes a plurality of recoverably-deformable structures arranged between the first and the second opposing electrodes and having a plurality of conductive-resistive elements. Each of the recoverably-deformable structures including at least one of a variable conductor and a variable resistor and configured and arranged with attributes that set a force sensitivity of the electronic force sensor.


Described here is a solid-state lithium-ion battery, comprising a cathode, an anode, and a solid-state electrolyte disposed between the cathode and the anode, wherein the electrolyte comprises a hexacyanometallate represented by A_(x)P_(y)[R(CN)_(6-w)L_(w)]_(z), wherein: A is at least one alkali metal cation, P is at least one transition metal cation, at least one post-transition metal cation, and/or at least one alkaline earth metal cation, R is at least one transition metal cation, L is an anion, x, y, and z are related based on electrical neutrality, x>0, y>0, z>0, and 0w6.


Patent
Stanford University | Date: 2015-08-21

A method for preparing plan-view transmission electron microscopy specimens is disclosed. The method employs isotropic vapor-phase etching in conjunction with one or more integrated etch-stop layers that give rise to a support membrane having a well-controlled, substantially uniform thickness. In some embodiments, the support membrane comprises an etch-stop layer that is formed using a high-precision formation process, such as atomic-layer deposition, oxidation, and the like. As a result, formation of the support membrane does not require additional processes, such as mechanical polishing or ion milling, to achieve its desired thickness. The method enables reduced specimen-preparation time, as well as simultaneous preparation of multiple specimens having large, uniformly thick areas for imaging.


A method and/or system for analyzing data using population clustering through density based merging.


A method and/or system for analyzing data using population clustering through density based merging.


Systems and methods for providing reinforcement learning for a deep learning network are disclosed. A reinforcement learning process that provides deep exploration is provided by a bootstrap that applied to a sample of observed and artificial data to facilitate deep exploration via a Thompson sampling approach.


Described is a locomotive implant for usage within a predetermined magnetic field. In one embodiment magnetohydrodynamics is used to generate thrust with a plurality of electrodes. In another embodiment, asymmetric drag forces are used to generate thrust.


Patent
Stanford University | Date: 2016-08-10

Methods and systems for three-dimensional (3D) reconstruction of endoscopic data in accordance with embodiments of the invention are described. In one embodiment, a method for processing a plurality of images captured by an endoscope includes preprocessing a plurality of images captured by an endoscope and including at least a portion of an organ. In many embodiments of the invention, the preprocessing includes estimating variations in light intensity within scenes captured by the plurality of images, and generating a set of color-adjusted images based on those variations. The method according to some embodiments of the invention may include generating a 3D point cloud representing points on a surface of the organ based on the set of color-adjusted images, defining a mesh representing the surface of the organ based on the 3D point cloud, and generating a texture of the surface of the organ based on the set of color-adjusted images.


Patent
Stanford University | Date: 2016-11-11

C1q is shown to be expressed in neurons, where it acts as a signal for synapse elimination. Methods are provided for protecting or treating an individual suffering from adverse effects of synapse loss. These findings have broad implications for a variety of clinical conditions, including Alzheimers disease.


Patent
Stanford University | Date: 2016-08-08

The present disclosure provides analyte-specific binding reagents conjugated with a platinum-containing moiety, e.g., cisplatin, and methods, compositions, and kits for their production and use in assays for analyte detection.


Patent
Ventana Medical Systems and Stanford University | Date: 2016-12-09

The subject disclosure presents systems and computer-implemented methods for assessing a risk of cancer recurrence in a patient based on a holistic integration of large amounts of prognostic information for said patient into a single comparative prognostic dataset. A risk classification system may be trained using the large amounts of information from a cohort of training slides from several patients, along with survival data for said patients. For example, a machine-learning-based binary classifier in the risk classification system may be trained using a set of granular image features computed from a plurality of slides corresponding to several cancer patients whose survival information is known and input into the system. The trained classifier may be used to classify image features from one or more test patients into a low-risk or high-risk group.


Patent
Stanford University | Date: 2016-08-05

A solar-cell module comprising a tandem solar cell and a controller that substantially optimizes the power output the tandem solar cell is disclosed. The tandem solar cell includes a first solar cell having a first energy bandgap and a second solar cell having a second energy bandgap, where the first and second solar cells are arranged such that light not absorbed by the first solar cell passes through it to the second solar cell to be absorbed. The controller controls an electrical parameter, such as current or voltage, of at least one of the first and second solar cells such that the electrical parameter is equal in both cells, thereby substantially optimizing the output power of the tandem solar cell.


Patent
Stanford University | Date: 2016-07-29

A permanently sealed vacuum tube is used to provide the electrons for an electron microscope. This advantageously allows use of low vacuum at the sample, which greatly simplifies the overall design of the system. There are two main variations. In the first variation, imaging is provided by mechanically scanning the sample. In the second variation, imaging is provided by point projection. In both cases, the electron beam is fixed and does not need to be scanned during operation of the microscope. This also greatly simplifies the overall system.


According to example embodiments, a method includes dispersing carbon nanotubes in a mixed solution containing a solvent, the carbon nanotubes, and a dispersant, the carbon nanotubes including semiconducting carbon nanotubes, the dispersant comprising a polythiophene derivative including a thiophene ring and a hydrocarbon sidechain linked to the thiophene ring. The hydrocarbon sidechain includes an alkyl group containing a carbon number of 7 or greater. The hydrocarbon sidechain may be regioregularly arranged, and the semiconducting carbon nanotubes are selectively separated from the mixed solution. An electronic device includes semiconducting carbon nanotubes and the foregoing described polythiophene derivative.


Patent
Stanford University | Date: 2015-02-27

Aspects of the present disclosure are directed to apparatuses, systems and methods involving imaging providing pixel intensity ratios using circuitry. According to an example embodiment, an apparatus includes a photosensor array having an array of sensors and a circuitry. Each sensor of the photosensor array provides a signal value for a pixel that is indicative of an intensity of light detected. Further, the circuitry responds to the signal values from a plurality of sensors of the photosensor array, by converting signals indicative of a ratio of pixel intensity values to a digital signal that characterize at least an edge of an object corresponding to or associated with the intensity of the detected light. The circuitry provides digital signals, each indicative of a ratio of pixel intensity values, for respective sensors of the photosensor array.


Patent
Stanford University | Date: 2017-03-29

Recombinant adeno-associated viral (AAV) capsid proteins are provided. Methods for generating the recombinant adeno-associated viral capsid proteins and a library from which the capsids are selected are also provided


Patent
Stanford University | Date: 2015-04-30

Improved methods are provided for the recombinant synthesis of collagen, particularly collagen VII, in host cell, and for therapeutic delivery of the same. The recombinant collagen is produced in a host cell that has increased levels of prolyl-4-hydroxylase, relative to basal cell levels. The collagen produced by the methods of the invention has increased numbers of modified proline residues, relative to a recombinant collagen produced in a host cell having basal levels of prolyl-4-hydroxylase. The increased proline modification provides for a collagen having increased stability, including increased in vivo stability.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Fellowship | Award Amount: 1.15M | Year: 2014

Mathematics is a profound intellectual achievement with impact on all aspects of business and society. For centuries, the highest level of mathematics has been seen as an isolated creative activity, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs that are just too long and complicated for any human to comprehend, using programs designed to verify hardware. Yet these techniques are currently used in stand-alone fashion, lacking integration with each other or with human creativity or fallibility. Social machines are new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity. Our long-term vision is to change mathematics, transforming the reach, pace, and impact of mathematics research, through creating a mathematics social machine: a combination of people, computers, and archives to create and apply mathematics. Thus, for example, an industry researcher wanting to design a network with specific properties could quickly access diverse research skills and research; explore hypotheses; discuss possible solutions; obtain surety of correctness to a desired level; and create new mathematics that individual effort might never imagine or verify. Seamlessly integrated under the hood might be a mixture of diverse people and machines, formal and informal approaches, old and new mathematics, experiment and proof. The obstacles to realising the vision are that (i) We do not have a high level understanding of the production of mathematics by people and machines, integrating the current diverse research approaches (ii) There is no shared view among the diverse re- search and user communities of what is and might be possible or desirable The outcome of the fellowship will be a new vision of a mathematics social machine, transforming the reach, pace and impact of mathematics. It will deliver: analysis and experiment to understand current and future production of mathematics as a social machine; designs and prototypes; ownership among academic and industry stakeholders; a roadmap for delivery of the next generation of social machines; and an international team ready to make it a reality.


Patent
Stanford University, Fabene and Constantin | Date: 2016-07-13

Methods are provided for the prevention and treatment of seizures and epilepsy. It is shown herein that leukocyte recruitment plays a key role in the pathogenesis of epilepsy. Treatment with an agent that inhibits leukocyte recruitment has therapeutic and preventative effects in blocking recurrent seizures and epilepsy. The agent is a a selective antagonist, which binds to an adhesion molecule being a selectin or a ligand thereof, such as P-selectin glycoprotein ligand-1.


Methods of treating an adult mammal for an aging-associated impairment are provided. Aspects of the methods include modulating CCR3, e.g., by modulating eotaxin-1/CCR3 interaction, in the mammal in a manner sufficient to treat the mammal for the aging-associated impairment. A variety of aging-associated impairments may be treated by practice of the methods, which impairments include cognitive impairments.


Paz J.T.,University of California at San Francisco | Huguenard J.R.,Stanford University
Nature Neuroscience | Year: 2015

Epileptic seizures represent dysfunctional neural networks dominated by excessive and/or hypersynchronous activity. Recent progress in the field has outlined two concepts regarding mechanisms of seizure generation, or ictogenesis. First, all seizures, even those associated with what have historically been thought of as 'primary generalized' epilepsies, appear to originate in local microcircuits and then propagate from that initial ictogenic zone. Second, seizures propagate through cerebral networks and engage microcircuits in distal nodes, a process that can be weakened or even interrupted by suppressing activity in such nodes. We describe various microcircuit motifs, with a special emphasis on one that has been broadly implicated in several epilepsies: feed-forward inhibition. Furthermore, we discuss how, in the dynamic network in which seizures propagate, focusing on circuit 'choke points' remote from the initiation site might be as important as that of the initial dysfunction, the seizure 'focus'. © 2015 Nature America, Inc. All rights reserved.


Lassila J.K.,Stanford University | Zalatan J.G.,University of California at San Francisco | Herschlag D.,Stanford University
Annual Review of Biochemistry | Year: 2011

Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field. © 2011 by Annual Reviews. All rights reserved.


Fradkin E.,University of Illinois at Urbana - Champaign | Kivelson S.A.,Stanford University | Tranquada J.M.,Brookhaven National Laboratory
Reviews of Modern Physics | Year: 2015

The electronic phase diagrams of many highly correlated systems, and, in particular, the cuprate high temperature superconductors, are complex, with many different phases appearing with similar (sometimes identical) ordering temperatures even as material properties, such as dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as "competing orders." However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative "pair-density wave," the general relation is better thought of in terms of "intertwined orders." Some of the experiments in the cuprates which suggest that essential aspects of the physics are reflected in the intertwining of multiple orders, not just in the nature of each order by itself, are selectively analyzed. Several theoretical ideas concerning the origin and implications of this complexity are also summarized and critiqued. ©2015 American Physical Society.


Patent
President And Fellows Of Harvard College and Stanford University | Date: 2015-10-30

Methods, systems, compositions and strategies for the delivery of WW domain-containing fusion proteins into cells in vivo, ex vivo, or in vitro via ARMMs are provided. Methods, systems, compositions and strategies for the delivery of Cas9 proteins and/or Cas9 variants into cells in vivo, ex vivo, or in vitro via fusion to ARMM associated proteins (e.g., ARRDC1 or TSG101) are also provided.


RHINOS aims at increasing the use of EGNSS to support the safety-critical train localization function for train control in emerging regional and global markets. RHINOS adds value to EGNSS by leveraging the results from prior or existing projects, and develops a Railway High Integrity Navigation Overlay System to be used by the rail community. RHINOS pillar is the GNSS infrastructure realized for the aviation application with additional layers that meet the rail requirements in the difficult railway environments. RHINOS will feature an international cooperation with the Stanford University that has been involved in the aviation application since the birth of the GPS, gaining an undeniable knowledge of the GNSS performance and high-integrity applications. The ambition is a positive step beyond the proliferation of GNSS platforms, mainly tailored for regional applications, to favor a global solution to release the potential benefits of the EGNSS in the fast growing train signaling world market. The RHINOS work programme includes the investigation of candidate concepts for the provision of the high integrity needed to protect the detected position of the train, as required by the train control system application. The EGNSS (GALILEO and EGNOS) plus GPS and WAAS constitute the reference infrastructure that is available world-wide. Moreover, local augmentation elements, ARAIM techniques and other sensors on the train are the add-on specific assets for mitigating the hazards due to the environmental effects which dominate the rail application. A further objective of RHINOS is to contribute to the definition of a standard for the Railway High Integrity Navigation Overlay System leveraging on the EU-US Cooperation Agreement on ARAIM. The RHINOS dissemination plan includes three specific Workshops with the rail and satellite stakeholders, at Stanford University for the US community, in Roma for the Western European community and in Prague for the Eastern European community.


Grant
Agency: National Science Foundation | Branch: | Program: STTR | Phase: Phase I | Award Amount: 225.00K | Year: 2016

The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project is a new tool to safely and nondestructively deliver genes and other compounds to individual cells in a laboratory petri dish (in vitro) setting. New forms of therapies for cancer and other intractable diseases take advantage of a patient's own cells, re-engineered in the laboratory to target a tumor or other diseased tissue. However, generating these cells is currently inefficient, slow, and expensive. Patient-derived cells resist transfection using standard non-viral biochemical approaches of lipid delivery systems, cell-penetrating peptides, and high-voltage electroporation, requiring an engineering alternative. A safe, turnkey, and scalable technology would be transformative for research and life sciences companies, and represents a high-growth and high-value market opportunity. This STTR Phase I project proposes a new nanomaterial delivery system to introduce reprogramming agents into immune cells efficiently and with low cell toxicity. This project will examine how the structure and application of the nanomaterial platform dictates the resulting immune cell delivery efficiency, and optimize the process to achieve >50% transfection efficiency with primary immune cells. Achieving this transfection efficiency would be transformative to researchers and clinicians using primary immune cells. The protocol for using these nanomaterials is simple, and turnkey to use for life science researchers. Device costs will be reduced through improved manufacturing techniques to be competitive with currently available methods.


Grant
Agency: Department of Health and Human Services | Branch: National Institutes of Health | Program: STTR | Phase: Phase I | Award Amount: 243.32K | Year: 2015

DESCRIPTION provided by applicant This STTR application proposes development of MedicaSafe Inc andapos s Multimodal Analgesic Protection System MAPSafe Built around MedicaSafeandapos s proprietary Medication Therapy Optimization MTO technology MAPSafe will be designed to mitigate the myriad risks associated with prescription opioid use post operatively and throughout recovery after surgery Although prescription opioids are a mainstay of acute and chronic pain management their use is associated with numerous risks The misuse and abuse of prescription opioids has become a widespread public health problem in the United States and iatrogenic exposure to opioids postoperatively may lead to persistent opioid use In collaboration with Stanford University MedicaSafeandapos s Multimodal Analgesic Protection System MAPSafe will be designed to mitigate opioid misuse and abuse delayed opioid cessation and the subsequent development of chronic opioid use The Analgesic Regimen Control ARC device represents the foundational technology for the complete MAPSafe program An information motivation behavioral skills IMB model will serve as the theoretical foundation for development of all MAPSafe clinical content components which will include a Phase I Smart Tapering Module Opioid Induced Constipation Module and Safe Disposal Module Phase I will involve empirical development and feasibility testing of the MAPSafe service Activities with patients and experts in pain management will include Joint Application Development JAD panels to determine feasible components of the final system including the ARC device and related clinical content a randomized comparative pilot study to to compare performance of the MAPSafe program to treatment as usual TAU in a real world clinical environment at Stanford University and Phase II development activities including development of a larger randomized controlled trial RCT protocol testing the MAPSafe program at Stanford University and overcoming regulatory hurdles including obtaining a special Drug Enforcement Administration DEA license to conduct the proposed Phase II trial PUBLIC HEALTH RELEVANCE Although prescription opioids are standard of care for patients with acute post operative pain their use is associated with numerous risks including misuse abuse adverse health effects and persistent opioid use This research will address the critical public health problem of opioid misuse and abuse by developing a technology guided system for patients with acute post operative pain that will mitigate the substantial risks associated wih the use of prescription opioids post operatively and throughout recovery after surgery


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: AAT.2013.4-2.;AAT.2013.1-1. | Award Amount: 5.83M | Year: 2013

Virtual prototyping (VP) is a key technology for environmental friendly and cost effective design in the aircraft industry. However, the underlying analysis and simulation tools (for loads, stresses, emissions, noise), are currently applied with a unique set of input data and model variables, although realistic operating conditions are a superposition of numerous uncertainties under which the industrial products operate (uncertainties on operational conditions, on geometries resulting from manufacturing tolerances, numerical error sources and uncertain physical model parameters). Major new developments in this new scientific area of Uncertainty Management and Quantification (UM and UQ) and Robust Design methods (RDM) are needed to bridge the gap towards industrial readiness, as the treatment of uncertainties enables a rigorous management of performance engagements and associated risks. This is the main objective of the UMRIDA project, which has the following action lines: Address major challenges in UQ and RDM to develop and apply new methods able to handle large numbers of simultaneous uncertainties, generalized geometrical uncertainties in design and analysis within a turn-around time acceptable for industrial readiness in VP systems. To respond to the validation requirements of UQ and RDM, a new generation of database, formed by industrial challenges (provided by the industrial partners), and more basic test cases, with prescribed uncertainties, is proposed. The methods developed will be assessed quantitatively towards the industrial objectives on this database, during the project and at two open workshops. The gained experience will be assembled in a Best Practice Guide on UQ and RDM. It is anticipated that the UMRIDA project will have a major impact on most of the EU objectives for air transport, by enabling design methods to take into account uncertainty based risk analysis.


Patent
Prescient Surgical and Stanford University | Date: 2016-06-28

A surgical access device for facilitating access through an incision to a surgical site in a patients body has a pliable membrane which is configured to engage and expand the incision. The pliable membrane includes a base layer, a permeable membrane attached to the base layer, and a fluid channel disposed between the layers. The fluid channel is fluidly coupled to a fluid source. The fluid is delivered to the surgical site via the permeable membrane. The surgical access device may also have a locking mechanism for holding the device in a desired configuration.


A combination of surface plasmon field enhanced fluorescence spectroscopy (SPFS) and isotachophoresis (ITP) technologies for detecting biomolecules is disclosed. It uses ITP to preconcentrate the reactants and accelerate the reaction, and then delivers the reacted sample to an SPFS sensor for detection. A microfluidic device with a T-junction is provided, which has two reservoirs respectively containing a low-mobility trailing electrolyte buffer and a high-mobility leading electrolyte buffer, and a main fluid channel between the two reservoirs, where the SPFS sensor is located on a side channel joined to the main channel. A two-step technique is employed, including a step of sample loading and ITP extraction, and a step of delivery of concentrated sample to the detector chamber by pressure-driven flow. In another embodiment, the SPFS sensor is located on the main fluid channel between the two reservoirs. In a particular example, the technique is used in a DNAzyme assay.


Brongersma M.L.,Stanford University | Cui Y.,Stanford University | Cui Y.,SLAC | Fan S.,Stanford University
Nature Materials | Year: 2014

High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells. © 2014 Macmillan Publishers Limited.


Wang Z.,Tsinghua University | Zhang S.-C.,Stanford University
Physical Review X | Year: 2012

We propose general topological order parameters for interacting insulators in terms of the Green's function at zero frequency. They provide a unified description of various interacting topological insulators including the quantum anomalous Hall insulators and the time-reversal-invariant insulators in four, three, and two dimensions. Since only the Green's function at zero frequency is used, these topological order parameters can be evaluated efficiently by most numerical and analytical algorithms for strongly interacting systems.


Patent
Vib Vzw, Vrije Universiteit Brussel and Stanford University | Date: 2016-08-13

The present invention relates to the field of GPCR structure biology and signaling. In particular, the present invention relates to protein binding domains directed against or capable of specifically binding to a functional conformational state of a G-protein-coupled receptor (GPCR). More specifically, the present invention provides protein binding domains that are capable of increasing the stability of a functional conformational state of a GPCR, in particular, increasing the stability of a GPCR in its active conformational state. The protein binding domains of the present invention can be used as a tool for the structural and functional characterization of G-protein-coupled receptors bound to various natural and synthetic ligands, as well as for screening and drug discovery efforts targeting GPCRs. Moreover, the invention also encompasses the diagnostic, prognostic and therapeutic usefulness of these protein binding domains for GPCR-related diseases.


Balachandar S.,University of Florida | Eaton J.K.,Stanford University
Annual Review of Fluid Mechanics | Year: 2010

Turbulent dispersed multiphase flows are common in many engineering and environmental applications. The stochastic nature of both the carrier-phase turbulence and the dispersed-phase distribution makes the problem of turbulent dispersed multiphase flow far more complex than its single-phase counterpart. In this article we first review the current state-of-the-art experimental and computational techniques for turbulent dispersed multiphase flows, their strengths and limitations, and opportunities for the future. The review then focuses on three important aspects of turbulent dispersed multiphase flows: the preferential concentration of particles, droplets, and bubbles; the effect of turbulence on the coupling between the dispersed and carrier phases; and modulation of carrier-phase turbulence due to the presence of particles and bubbles. Copyright © 2010 by Annual Reviews. All rights reserved.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.1.4-1 | Award Amount: 7.89M | Year: 2013

Hearing impairment is the most frequent human sensory deficit and is mainly caused by the irreversible loss of neurosensory cells in the cochlea. The lack of human otic cell models represents a significant roadblock that has hampered the development of drug-based or cell-based therapies for the treatment of hearing loss. In a collaborative effort under this proposal we wish to devise approaches to generate human otic progenitors and differentiated otic cells from different human stem cell sources. We have devised guidance protocols for mouse and human embryonic and reprogrammed stem cells toward inner ear cell types that make use of principles of early germ layer formation and otic induction. A limitation is the efficacy of otic progenitor cell generation. Purification techniques for human otic progenitors from ES/iPS cell sources and in addition from native human otic tissues from fetal and adult stages will will serve the dual purpose for one to enable the development of novel bioassays for drug screens, as well as generating cells with decreased tumorigenicity for cell transplantation studies in in vivo animal models. New hit compounds identified from screening efforts will be tested and validated further in established organ culture models. The identification of relevant candidate compounds will be further developed as lead drug candidates in noise and ototoxic drug induced in vivo models. The scope of this stem cell technology development requires a collaborative team effort, with groups that have substantial combined experience in human ES/iPS cell work, inner ear stem cell biology, high-throughput assay development, and in translating research findings into the clinic as well as into the biotechnology realm. Within the consortium there exists an established translational route from bench to bedside for the commercial development of human otic stem cell derived technology towards inner ear medical applications aiming at the restoration of hearing function.


Patent
Stanford University, Digonnet, Kilic, Solgaard, Jo and Afshar | Date: 2016-08-24

A sensor and a method of fabrication are provided. The sensor includes at least one optical waveguide and an optical reflector. The optical reflector is optically coupled to the at least one optical waveguide and includes a first portion and a second portion. The first portion is configured to reflect a first portion of light back to the at least one optical waveguide. The second portion is configured to reflect a second portion of light back to the at least one optical waveguide. The reflected second portion of the light differs in phase from the reflected first portion of the light by a phase difference that is not substantially equal to an integer multiple of when the second portion of the optical reflector is in an equilibrium position in absence of the perturbation.


Grant
Agency: Department of Defense | Branch: Special Operations Command | Program: STTR | Phase: Phase II | Award Amount: 1.50M | Year: 2015

As the carry and protective gear of the modern war fighter increases, the burden on the human body will necessarily increase. In our present TALOS MkIII project, we are developing lower body augmentation to preserve speed and agility while bearing this weight. Yet we cannot ignore the impact of this weight on the upper body: in this project we propose to develop an upper body exoskeleton with passive actuation and a novel, light weight transmission to articulate the shoulder, elbow, and possibly wrist joints. The device will provide gravity compensation for the total weight of arms, leaving the operator unencumbered by their mass, as well as being adjustable to provide significantly more assistance for specific applications. This system will then form the base platform for a fully powered arm exoskeleton in a future program; by providing the maximal passive assistance in this effort, the energetic efficiency of that future exoskeleton will be maximized. In conjunction with our teammates, we will use the latest technologies to develop a lightweight fully functional untethered lower body exoskeleton at a Technology Readiness Level 6.

Loading Stanford University collaborators
Loading Stanford University collaborators