Karlsruhe, Germany
Karlsruhe, Germany

Time filter

Source Type

Wolz J.,RWTH Aachen | Fleig M.,Water Technology Center | Schulze T.,Helmholtz Center for Environmental Research | Maletz S.,RWTH Aachen | And 6 more authors.
Journal of Soils and Sediments | Year: 2010

Purpose: The presented study investigated on contamination of suspended particulate matter (SPM) in rivers that was sampled long-term and with higher frequency during a flood event at the river Rhine. It was conducted to determine in vitro biological effects as well as to identify and quantify compound classes and effective contaminants. Research was part of investigation on hazards of contaminants bound to SPM to inundated sites and retention areas that are inundated during flood events. Material and methods: SPM was sampled in 2006 and more frequently in a flood event (August, 2007) at the river Rhine barrage of Iffezheim, Germany. SPM was GC-MS analyzed for hexachlorobenzene (HCB), several polychlorinated biphenyls (PCBs) as well as for polycyclic aromatic hydrocarbons (PAHs). Flood samples were fractionated applying a recently developed automated fractionation method to receive further insight into contaminant loads in flood SPM. Impacts on biological scale were assessed using in vitro biotests for xenometabolic 7-ethoxyresorufin-o-deethylase (EROD) assay as well as for mutagenic activity (Ames fluctuation assay). EROD induction was calculated as biological equivalent concentrations (bio-TEQs) and mutagenic potentials were shown as NOECs and maximum induction factors. Results and discussion: Chemical analysis gave low concentrations of PCBs (2006 and 2007) and HCB (2006). HCB concentrations increased during the flood in 2007 (maximum, 110 μg/kg SPM). Concentrations of PCBs were only initially elevated in the flood (maximum, 67 μg/kg SPM). EROD induction bio-TEQs ranged from 1,160 to 6,640 pg/g SPM in 2006 and showed maximum bio-TEQ at the peak discharge in 2007. There was no mutagenic activity with SPM of both years. Fractionation indicated highest EROD induction in PAH fractions with prioritized (EPA-) PAHs contributing to less than 1% to the fractions total bio-TEQ but also fractions containing more polar-to-polar substances were shown to contribute minor. Furthermore, more polar fractions were mutagenic active with SPM sampled after the peak of discharge (IFmax = 14.7). Conclusions: Contaminants bound to flood SPM can be hazardous to inundated retention areas. Concentrations can be assumed to be increasing correlated with discharge and, thus, with more extreme flood events. Furthermore, biological effects are elevated or first place appearing with SPM from floods. Hazards have to be expected not only from persistent and non-polar substances but alike from less persistent and more polar ones that, furthermore, are more relevant evaluating hazards to drinking water resources from public well fields. © 2010 Springer-Verlag.


Schulze T.,Helmholtz Center for Environmental Research | Ulrich M.,University of Heidelberg | Maier D.,Stadtwerke Karlsruhe GmbH SWK | Maier M.,Stadtwerke Karlsruhe GmbH SWK | And 3 more authors.
Environmental science and pollution research international | Year: 2015

The purpose of the present study was to assess the hazard potentials of contaminated suspended particulate matter (SPM) sampled during a flood event for floodplain soils using in vitro bioassays and chemical analysis. Sediment-contact tests were performed to evaluate the direct exposure of organisms to native soils and SPM at two different trophic levels. For comparison, acetonic extracts were tested using both contact tests and additionally two cell-based biotests for cytotoxicity and Ah receptor-mediated activity (EROD-Assay). The sediment-contact tests were carried out with the dehydrogenase assay with Arthrobacter globiformis and the fish embryo assay with Danio rerio. The results of this study clearly document that native samples may well be significantly more effective than corresponding extracts in the bacteria contact assay or the fish embryo test. These results question the commonly accepted concept that acetonic extracts are likely to overestimate the toxicity of soil and SPM samples. Likewise, the priority organic compounds analyzed failed to fully explain the toxic potential of the samples. The outcomes of this study revealed the insufficient knowledge regarding the relationship between the different exposure pathways. Finally, there is concern about adverse effects by settling suspended particulate matter and remobilized sediments in frequently inundated floodplain soils due to an increase of the hazard potential, if compared with infrequently inundated floodplain soils. We showed that the settling of SPM and sediments revealed a significant impact on the dioxin-like potencies of riparian soils.


Schulze T.,Free University of Berlin | Schulze T.,Helmholtz Center for Environmental Research | Ulrich M.,University of Heidelberg | Maier D.,Stadtwerke Karlsruhe GmbH SWK | And 7 more authors.
Environmental Science and Pollution Research | Year: 2014

The purpose of the present study was to assess the hazard potentials of contaminated suspended particulate matter (SPM) sampled during a flood event for floodplain soils using in vitro bioassays and chemical analysis. Sediment-contact tests were performed to evaluate the direct exposure of organisms to native soils and SPM at two different trophic levels. For comparison, acetonic extracts were tested using both contact tests and additionally two cell-based biotests for cytotoxicity and Ah receptor-mediated activity (EROD-Assay). The sediment-contact tests were carried out with the dehydrogenase assay with Arthrobacter globiformis and the fish embryo assay with Danio rerio. The results of this study clearly document that native samples may well be significantly more effective than corresponding extracts in the bacteria contact assay or the fish embryo test. These results question the commonly accepted concept that acetonic extracts are likely to overestimate the toxicity of soil and SPM samples. Likewise, the priority organic compounds analyzed failed to fully explain the toxic potential of the samples. The outcomes of this study revealed the insufficient knowledge regarding the relationship between the different exposure pathways. Finally, there is concern about adverse effects by settling suspended particulate matter and remobilized sediments in frequently inundated floodplain soils due to an increase of the hazard potential, if compared with infrequently inundated floodplain soils. We showed that the settling of SPM and sediments revealed a significant impact on the dioxin-like potencies of riparian soils. © 2014 Springer-Verlag Berlin Heidelberg


Wolz J.,RWTH Aachen | Grosshans K.,RWTH Aachen | Streck G.,Helmholtz Center for Environmental Research | Schulze T.,Helmholtz Center for Environmental Research | And 7 more authors.
Chemosphere | Year: 2011

Bankside groundwater is widely used as drinking water resource and, therefore, contamination has to be avoided. In the European Union groundwater protection is explicit subject to Water Framework Directive. While groundwater pollution may originate from different sources, this study investigated on impacts via flood events. Groundwater was sampled with increasing distance to the river Rhine near Karlsruhe, Germany. Samples were HPLC-MS-MS analyzed for the river contaminant carbamazepine to indicate river water infiltration, giving permanent presence in 250m distance to the river (14-47μgL -1). Following a flood event, concentrations of about 16-20μgL -1 could also be detected in a distance of 750m to the river. Furthermore, estrogenic activity as determined with the Yeast Estrogen Screen assay was determined to increase up to a 17β-ethinylestradiol equivalent concentration (E-EQ)=2.9ngL -1 near the river, while activity was initially measured following the flood with up to E-EQ=2.6ngL -1 in 750m distance. Detections were delayed with increasing distance to the river indicating river water expansion into the aquifer. Flood suspended matter and floodplain soil were fractionated and analyzed for estrogenic activity in parallel giving up to 1.4ngg -1 and up to 0.7ngg -1, respectively. Target analysis focusing on known estrogenic active substances only explained <1% of measured activities. Nevertheless, river water infiltration was shown deep into bankside groundwater, thus, impacting groundwater quality. Therefore, flood events have to be in the focus when aiming for groundwater and drinking water protection as well as for implementation of Water Framework Directive. © 2011 Elsevier Ltd.


Wolz J.,RWTH Aachen | Schulze T.,Helmholtz Center for Environmental Research | Lubcke-von Varel U.,Helmholtz Center for Environmental Research | Fleig M.,Water Technology Center | And 5 more authors.
Journal of Soils and Sediments | Year: 2011

Purpose: This study was carried out to determine hazards of particle-bound contaminants in rivers to retention areas close to public well fields in the context of flood events. The focus was on the assessment of soil contamination at a planned retention area. Soil core samples were chemically and biologically analyzed. Samples were fractionated to identify and compare contaminant loads and biological effects of soil and flood suspended particulate matter (SPM). Material and methods: Soil cores were sampled at inundated and non-inundated sites at a planned retention area. Soil was analyzed for hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs) as well as for polycyclic aromatic hydrocarbons (PAHs). The highest inducing soil sample was fractionated applying a recently developed automated fractionation method to receive further insight into contaminant loads in soil at inundated sites. Impacts on biological scale were assessed using in vitro biotests for xenometabolic activity (7-ethoxyresorufin-o-deethylase (EROD) assay) as well as for mutagenic activity (Ames fluctuation assay). EROD induction was calculated as biological equivalent concentration (bio-TEQ), and mutagenic potentials were given as no observed effect concentration (NOEC) and maximum induction factor (IFmax). Results and discussion: Soil core samples of each site induced EROD activity. However, extracts of soil sampled at a ground swale was by far the highest inducing (topsoil bio-TEQ = 41,000 pg/g). Further, chemical analysis yielded relative increases in concentration in particular: HCB (0.05 mg/kg), PCBs (0.19 mg/kg), and EPA-PAHs (39 mg/kg). Extracts of soil samples caused no mutagenic effects. PAHs caused the bulk of EROD activity (bio-TEQ = 32,000 pg/g) with ground swale topsoil fractions. Further, fractions containing moderately polar and polar substances gave elevated effects (bio-TEQ = 8,200 pg/g). Mutagenic potentials were shown with most fractions. However, highest induction was observed with fractions containing moderately polar to polar substances reflected by a NOEC ≥0.03 mg/ml and an IFmax ≤29. Conclusions: Soil contamination at floodplains is heterogeneous but may reach elevated levels with soil swales giving highest chemical concentrations and biological effects with total sample extracts and fractions. The origin of floodplain soil contamination can be evaluated using lines of evidence which may result in identification of contaminant transport path from sediment, via flood SPM to soil. Taking hazard assessment of floodplain soil forward to risk evaluation may indicate a concern which highlights the need to further investigate on hazards caused by eroded sediment in flood events to avoid conflicts of interest when planning and operating retention basins. © 2010 Springer-Verlag.


PubMed | Free University of Berlin, RWTH Aachen, University of Heidelberg and Stadtwerke Karlsruhe GmbH SWK
Type: Journal Article | Journal: Environmental science and pollution research international | Year: 2015

The purpose of the present study was to assess the hazard potentials of contaminated suspended particulate matter (SPM) sampled during a flood event for floodplain soils using in vitro bioassays and chemical analysis. Sediment-contact tests were performed to evaluate the direct exposure of organisms to native soils and SPM at two different trophic levels. For comparison, acetonic extracts were tested using both contact tests and additionally two cell-based biotests for cytotoxicity and Ah receptor-mediated activity (EROD-Assay). The sediment-contact tests were carried out with the dehydrogenase assay with Arthrobacter globiformis and the fish embryo assay with Danio rerio. The results of this study clearly document that native samples may well be significantly more effective than corresponding extracts in the bacteria contact assay or the fish embryo test. These results question the commonly accepted concept that acetonic extracts are likely to overestimate the toxicity of soil and SPM samples. Likewise, the priority organic compounds analyzed failed to fully explain the toxic potential of the samples. The outcomes of this study revealed the insufficient knowledge regarding the relationship between the different exposure pathways. Finally, there is concern about adverse effects by settling suspended particulate matter and remobilized sediments in frequently inundated floodplain soils due to an increase of the hazard potential, if compared with infrequently inundated floodplain soils. We showed that the settling of SPM and sediments revealed a significant impact on the dioxin-like potencies of riparian soils.

Loading Stadtwerke Karlsruhe GmbH SWK collaborators
Loading Stadtwerke Karlsruhe GmbH SWK collaborators