Time filter

Source Type

Canton, NY, United States

St. Lawrence University is a private, four-year liberal arts college located in the village of Canton in Saint Lawrence County, New York, United States. It has roughly 2400 undergraduate and 100 graduate students, about equally split between male and female. Wikipedia.

Haas S.A.,Arizona State University | Krueger P.M.,University of Colorado at Denver | Rohlfsen L.,St. Lawrence University
Journals of Gerontology - Series B Psychological Sciences and Social Sciences | Year: 2012

Objectives. We examine race/ethnic and nativity differences in objective measures of physical performance (i.e., peak expiratory flow, grip strength, and gait speed) in a nationally representative sample of older Whites, Blacks, and Hispanics. We also examine whether detailed measures of childhood and adult health and socioeconomic status (SES) mediate race/ethnic differences in physical performance. Method. We use data from the Health and Retirement Study, a population-based sample of older Americans born before 1947, and 3 measures of physical performance. Nested ordinary least squares models examine whether childhood and adult health and SES mediate race/ethnic differences in performance. Results. We find large and significant race/ethnic and nativity differences in lung function, grip strength, and gait speed. Adjusting for childhood and current adult health and SES reduces race/ethnic differences in physical performance but does not eliminate them entirely. Childhood health and SES as well as more proximal levels of SES are important determinants of race/ethnic disparities in later life physical performance. Discussion. The analysis highlights that a large proportion of race/ethnic and nativity disparities result from health and socioeconomic disadvantages in both early life and adulthood and thus suggests multiple intervention points at which disparities can be reduced. © The Author 2011. Source

Erlichman J.S.,St. Lawrence University
Journal of Applied Physiology | Year: 2010

We discuss the influence of astrocytes on respiratory function, particularly central CO2 chemosensitivity. Fluorocitrate (FC) poisons astrocytes, and studies in intact animals using FC provide strong evidence that disrupting astrocytic function can influence CO2 chemosensitivity and ventilation. Gap junctions interconnect astrocytes and contribute to K + homeostasis in the extracellular fluid (ECF). Blocking gap junctions alters respiratory control, but proof that this is truly an astrocytic effect is lacking. Intracellular pH regulation of astrocytes has reciprocal effects on extracellular pH. Electrogenic sodium-bicarbonate transport (NBCe) is present in astrocytes. The activity of NBCe alkalinizes intracellular pH and acidifies extracellular pH when activated by depolarization (and a subset of astrocytes are depolarized by hypercapnia). Thus, to the extent that astrocytic intracellular pH regulation during hypercapnia lowers extracellular pH, astrocytes will amplify the hypercapnic stimulus and may influence central chemosensitivity. However, the data so far provide only inferential support for this hypothesis. A. lactate shuttle from astrocytes to neurons seems to be active in the retrotrapezoid nucleus (RTN) and important in setting the chemosensory stimulus in the RTN (and possibly other chemosensory nuclei). Thus astrocytic processes, so vital in controlling the constituents of the ECF in the central nervous system, may profoundly influence central CO2 chemosensitivity and respiratory control. Copyright © 2010 the American Physiological Society. Source

Ganesana M.,Clarkson University | Erlichman J.S.,St. Lawrence University | Andreescu S.,Clarkson University
Free Radical Biology and Medicine | Year: 2012

The overproduction of reactive oxygen species and the resulting damage are central to the pathology of many diseases. The study of the temporal and spatial accumulation of reactive oxygen species has been limited because of the lack of specific probes and techniques capable of continuous measurement. We demonstrate the use of a miniaturized electrochemical cytochrome c (Cyt c) biosensor for real-time measurements and quantitative assessment of superoxide production and inactivation by natural and engineered antioxidants in acutely prepared brain slices from mice. Under control conditions, superoxide radicals produced from the hippocampal region of the brain in 400-μm-thick sections were well within the range of detection of the electrode. Exposure of the slices to ischemic conditions increased the superoxide production twofold and measurements from the slices were stable over a 3- to 4-h period. The stilbene derivative and anion channel inhibitor 4,4′-diisothiocyano-2,2′- disulfonic stilbene markedly reduced the extracellular superoxide signal under control conditions, suggesting that a transmembrane flux of superoxide into the extracellular space may occur as part of normal redox signaling. The specificity of the electrode for superoxide released by cells in the hippocampus was verified by the exogenous addition of superoxide dismutase (SOD), which decreased the superoxide signal in a dose-dependent manner. Similar results were seen with the addition of the SOD mimetic cerium oxide nanoparticles (nanoceria), in that the superoxide anion radical scavenging activity of nanoceria with an average diameter of 15 nm was equivalent to 527 U of SOD for each 1 μg/ml of nanoceria added. This study demonstrates the potential of electrochemical biosensors for studying real-time dynamics of reactive oxygen species in a biological model and the utility of these measurements in defining the relative contribution of superoxide to oxidative injury. © 2012 Elsevier Inc. Source

This study examines spatial and temporal variability of bioaccumulation of cadmium, copper, and zinc in tissues of zebra mussels in the upper reach of the St. Lawrence River which originates at the outflow of Lake Ontario. It was hypothesized that concentrations of these metals in mussel tissues would decline over time and decrease with increasing distance from the outlet of Lake Ontario as a result of on-going efforts to reduce contaminant discharges into the lake. Size of mussels was also evaluated as a factor influencing bioaccumulation. Mussels were collected annually in October from six sites from 1994 to 2005, including one site near a local industry. Individuals were grouped into five or more size classes per site in each year. Soft tissues were analyzed for total cadmium, copper and zinc. Concentrations of cadmium and copper in tissues varied significantly both spatially and temporally. Cadmium concentrations were elevated at most sites; copper concentrations were moderately elevated compared with other studies in the Lake Ontario basin and St. Lawrence River. Zinc showed the most uniformity in mussels possibly due to internal regulation and to low levels of environmental exposure. Animal size correlated with copper concentrations of tissues in approximately 30% of samples but infrequently for cadmium and zinc. Cadmium and copper levels were found to decline downstream over time. Inter-annual variability of metal concentrations in mussel tissues suggests utilization in long-term monitoring programs to discern significant trends. © Springer Science+Business Media B.V. 2011. Source

Johns C.,St. Lawrence University
Journal of Great Lakes Research | Year: 2011

In this study, the utility of quagga mussels (Dreissena bugensis) as biomonitors was investigated by measuring total concentrations of three trace metals, cadmium, copper, and zinc, in soft tissues. Quagga mussels were sampled from five sites along the upper St. Lawrence River, including one industrially influenced site, from 1999 through 2007. Mussels were collected from near-shore areas, divided into 5 size classes based on maximum shell length, and tissues were pooled for analysis of each size group. Two-way analysis of variance and a posteriori range tests were used to test for differences among sites along a distance gradient from the outflow of Lake Ontario and to examine inter-annual variability within and among sites. Cadmium concentrations were higher nearer the outflow of the lake. Copper concentrations varied among sites and years, but were generally highest near the industrial site. Zinc concentrations were relatively uniform, possibly reflecting internal regulation. Animal size measured as shell length was not an important factor in this section of the river, but warrants further consideration in a wider range of ecosystems and contaminant exposure levels. In general, concentrations of the three metals were not high compared to reports in the published literature for dreissenid mussels in contaminated environments. However, few studies have utilized quagga mussels rather than zebra mussels. The two species may differ in bioaccumulation patterns and may not be interchangeable as biomonitors. Further studies of bioaccumulation of contaminants by quagga mussels in a wider range of contaminant exposures would be useful particularly as quagga mussels displace zebra mussels in the Laurentian Great Lakes and the St. Lawrence River. © 2010. Source

Discover hidden collaborations