Memphis, TN, United States
Memphis, TN, United States

Time filter

Source Type

Methods for regulating T cell function in a subject, particularly regulatory T cell activity are provided. Methods of the invention include administering to a subject a therapeutically effective amount of an Interleukin 35-specific binding agent, such as an antibody or small molecule inhibitor. The invention further provides methods for enhancing the immunogenicity of a vaccine or overcoming a suppressed immune response to a vaccine in a subject, including administering to the subject a therapeutically effective amount of an IL35-specific binding agent and administering to the subject a vaccine. In one embodiment the vaccine is a cancer vaccine.

Ucl Business Plc and St Jude Childrens Research Hospital | Date: 2016-09-01

There is provided a nucleic acid molecule comprising a nucleotide sequence encoding for a functional factor VIII protein, wherein the portion of the nucleotide sequence encoding for the B domain of the factor VIII protein is between 90 and 111 nucleotides in length and encodes for an amino acid sequence comprising a sequence having at least 85% identity to SEQ ID NO: 4 and which comprises six asparagine residues. Also provided is a functional factor VIII protein, a vector comprising the above nucleic acid molecule, a host cell, a transgenic animal, a method of treating haemophilia, e.g. haemophilia A, and a method for the preparation of a parvoviral gene delivery vector.

Tait S.W.G.,St Jude Childrens Research Hospital | Green D.R.,St Jude Childrens Research Hospital
Nature Reviews Molecular Cell Biology | Year: 2010

Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro-and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences. © 2010 Macmillan Publishers Limited. All rights reserved.

Kanneganti T.-D.,St Jude Childrens Research Hospital
Nature Reviews Immunology | Year: 2010

The immune response to viral infections is determined by a complex interplay between the pathogen and the host. Innate immune cells express a set of cytosolic sensors to detect viral infection. Recognition by these sensors induces the production of type I interferons and the assembly of inflammasome complexes that activate caspase-1, leading to production of interleukin-1β (IL-1β) and IL-18. Here, I discuss recent progress in our understanding of the central roles of NOD-like receptors (NLRs) and inflammasomes in the immune response during viral infections. This information will improve our understanding of host defence mechanisms against viruses and provide new avenues for interfering in the pathogenesis of infectious diseases. © 2010 Macmillan Publishers Limited. All rights reserved.

Gilbertson R.J.,St Jude Childrens Research Hospital
Cell | Year: 2011

Cancer comprises a bewildering assortment of diseases that kill 7.5 million people each year. Poor understanding of cancer's diversity currently thwarts our goal of a cure for every patient, but recent integration of genomic and stem cell technologies promises a route through this impasse. © 2011 Elsevier Inc.

Ware R.E.,St Jude Childrens Research Hospital
Blood | Year: 2010

Hydroxyurea has many characteristics of an ideal drug for sickle cell anemia (SCA) and provides therapeutic benefit through multiple mechanisms of action. Over the past 25 years, substantial experience has accumulated regarding its safety and efficacy for patients with SCA. Early proof-of principle studies were followed by prospective phase 1/2 trials demonstrating efficacy in affected adults, then adolescents and children, and more recently infants and toddlers. The phase 3 National Heart, Lung and Blood Institute-sponsored Multicenter Study of Hydroxyurea trial proved clinical efficacy for preventing acute vaso-occlusive events in severely affected adults. Based on this cumulative experience, hydroxyurea has emerged as an important therapeutic option for children and adolescents with recurrent vaso-occlusive events; recent evidence documents sustained long-term benefits with prevention or reversal of chronic organ damage. Despite abundant evidence for its efficacy, however, hydroxyurea has not yet translated into effective therapy for SCA. Because many healthcare providers have inadequate knowledge about hydroxyurea, patients and families are not offered treatment or decline because of unrealistic fears. Limited support for hydroxyurea by lay organizations and inconsistent medical delivery systems also contribute to underuse. Although questions remain regarding its long-term risks and benefits, current evidence suggests that many young patients with SCA should receive hydroxyurea treatment. © 2010 by The American Society of Hematology.

McKinnon P.J.,St Jude Childrens Research Hospital
Annual Review of Pathology: Mechanisms of Disease | Year: 2012

Ataxia telangiectasia (A-T) results from inactivation of the ATM protein kinase. DNA-damage signaling is a prime function of this kinase, although other roles have been ascribed to ATM. Identifying the primary ATM function(s) for tissue homeostasis is key to understanding how these functions contribute to the prevention of A-T-related pathology. In this regard, because A-T is primarily a neurodegenerative disease, it is essential to understand how ATM loss results in degenerative effects on the nervous system. In addition to delineating the biochemistry and cell biology of ATM, important insights into the molecular basis for neurodegeneration in A-T come from a spectrum of phenotypically related neurodegenerative diseases that directly result from DNA-repair deficiency. Together with A-T, these syndromes indicate that neurodegeneration can be caused by the failure to appropriately respond to DNA damage. This review focuses on defective DNA-damage signaling as the underlying cause of A-T. Copyright ©2012 by Annual Reviews. All rights reserved.

Zimmerman E.I.,St Jude Childrens Research Hospital
Blood | Year: 2013

FLT3 kinase internal tandem duplication (ITD) mutations are common in acute myeloid leukemia (AML) and are associated with poor clinical outcomes. Although initial responses to FLT3 tyrosine kinase inhibitors (TKIs) are observed in FLT3-ITD-positive patients, subsequent relapse often occurs upon acquisition of secondary FLT3 kinase domain (KD) mutations, primarily at residues D835 and F691. Using biochemical assays, we determined that crenolanib, a novel TKI, demonstrates type I properties and is active against FLT3 containing ITD and/or D835- or F691-activating mutations. Potent activity was observed in FLT3-ITD-positive AML cell lines. Crenolanib delayed the outgrowth of MV4-11 cells in a xenograft mouse model, whereas in combination with the type II TKI sorafenib, a significant decrease in leukemic burden (P < .001) and prolonged survival (P < .01) was observed compared with either type I or II TKI alone. Crenolanib was active against Ba/F3 cells harboring FLT3-ITD and secondary KD mutations and sorafenib-resistant MOLM-13 cells containing FLT3-ITD/D835Y both in vitro and in vivo. In addition, crenolanib inhibited drug-resistant AML primary blasts with FLT3-ITD and D835H/Y mutations. These preclinical data demonstrate that crenolanib is effective against FLT3-ITD containing secondary KD mutations, suggesting that crenolanib may be a useful therapeutic agent for TKI-naive and drug-resistant FLT3-ITD-positive AML.

Robison L.L.,St Jude Childrens Research Hospital | Hudson M.M.,St Jude Childrens Research Hospital
Nature Reviews Cancer | Year: 2014

Survival rates for most paediatric cancers have improved at a remarkable pace over the past four decades. In developed countries, cure is now the probable outcome for most children and adolescents who are diagnosed with cancer: their 5-year survival rate approaches 80%. However, the vast majority of these cancer survivors will have at least one chronic health condition by 40 years of age. The burden of responsibility to understand the long-term morbidity and mortality that is associated with currently successful treatments must be borne by many, including the research and health care communities, survivor advocacy groups, and governmental and policy-making entities.

Gilbertson R.J.,St Jude Childrens Research Hospital
Cell | Year: 2014

Attempts to treat cancer with drugs that target mutated proteins have met with mixed success. By screening for compounds that alter the phenotype of glioblastoma cells - an aggressive brain tumor - Kitambi et al. identify a potential new treatment of the disease and shed light on an unusual cell death mechanism. © 2014 Elsevier Inc.

Loading St Jude Childrens Research Hospital collaborators
Loading St Jude Childrens Research Hospital collaborators