St Jude Childrens Research Hospital

Memphis, TN, United States

St Jude Childrens Research Hospital

Memphis, TN, United States
SEARCH FILTERS
Time filter
Source Type

The invention is directed to treatment of cancer, infections and various inflammatory and autoimmune conditions by affecting regulatory T cell stability and function via a Neuropilin-1:Semaphorin axis.


Patent
St Jude Childrens Research Hospital | Date: 2017-02-13

The receptor for Interleukin 35 (IL-35) is provided. The Interleukin 35 Receptor (IL-35R) comprises a heterodimeric complex of the Interluekin12R2 receptor and the gp130 receptor. Various compositions comprising the IL-35R complex, along with polynucleotides encoding the same and kits and methods for the detection of the same the same are provided. Methods of modulating the activity of IL-35R or modulating effector T cell functions are also provided. Such methods employ various IL-35R antagonists and agonists that modulate the activity of the IL-35R complex and, in some embodiments, modulate effector T cell function. Further provided are methods for screening for IL-35R binding agents and for IL-35R modulating agents. Various methods of treatment are further provided.


Patent
Mount Sinai School of Medicine, St Jude Childrens Research Hospital and The United States Of America | Date: 2016-12-12

The present invention relates, in general, to attenuated swine influenza viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. In particular, the invention relates to attenuated swine influenza viruses having modifications to a swine NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. These viruses replicate in vivo, but demonstrate decreased replication, virulence and increased attenuation, and therefore are well suited for use in live virus vaccines, and pharmaceutical formulations.


Patent
National University of Singapore and St Jude Childrens Research Hospital | Date: 2017-03-22

The present invention provides, in certain aspects, a natural killer (NK) cell that expresses all or a functional portion of interleukin-15 (IL-15), and methods for producing such cells. The invention further provides methods of using a natural killer (NK) cell that expresses all or a functional portion of interleukin-15 (IL-15) to treat cancer in a subject or to enhance expansion and/or survival of NK cells.


Methods for regulating T cell function in a subject, particularly regulatory T cell activity are provided. Methods of the invention include administering to a subject a therapeutically effective amount of an Interleukin 35-specific binding agent, such as an antibody or small molecule inhibitor. The invention further provides methods for enhancing the immunogenicity of a vaccine or overcoming a suppressed immune response to a vaccine in a subject, including administering to the subject a therapeutically effective amount of an IL35-specific binding agent and administering to the subject a vaccine. In one embodiment the vaccine is a cancer vaccine.


Patent
Ucl Business Plc and St Jude Childrens Research Hospital | Date: 2016-09-01

There is provided a nucleic acid molecule comprising a nucleotide sequence encoding for a functional factor VIII protein, wherein the portion of the nucleotide sequence encoding for the B domain of the factor VIII protein is between 90 and 111 nucleotides in length and encodes for an amino acid sequence comprising a sequence having at least 85% identity to SEQ ID NO: 4 and which comprises six asparagine residues. Also provided is a functional factor VIII protein, a vector comprising the above nucleic acid molecule, a host cell, a transgenic animal, a method of treating haemophilia, e.g. haemophilia A, and a method for the preparation of a parvoviral gene delivery vector.


Patent
Sloan Kettering Cancer Center and St Jude Childrens Research Hospital | Date: 2017-02-08

A method of determining sensitivity to cancer treatment includes the step of determining the presence of overexpression of MYC in a biological sample from a patient suffering from cancer, wherein the presence of overexpression of MYC indicates a sensitivity to a treatment by a CDK9 inhibitor and wherein the cancer is selected from the group consisting of carcinoma, leukemia, and lymphoma.


Chi H.,St Jude Childrens Research Hospital
Trends in Pharmacological Sciences | Year: 2011

Sphingosine-1-phosphate (S1P) is a bioactive lipid with important functions in the immune system. S1P levels are regulated by the balance between its synthesis through sphingosine kinases and its degradation by S1P lyase. S1P signals through plasma membrane G-protein-coupled receptors (S1PR1-S1PR5) or acts directly on intracellular targets. Although it has long been known that the S1P-S1PR1 axis mediates T cell egress from lymphoid organs, recent studies have revealed intrinsic functions of S1P and its receptors in both innate and adaptive immune systems that are independent of immune cell trafficking. Here I summarize recent advances in understanding of the roles of S1P and S1P receptors in inflammatory and allergic responses and lymphocyte differentiation, which directly contribute to the regulation of inflammatory and autoimmune diseases. I also describe strategies to target S1P and S1P receptors for immune-mediated diseases, particularly the immunosuppressant FTY720 (fingolimod), which has recently become the first oral therapy for relapsing multiple sclerosis. © 2010 Elsevier Ltd All rights reserved.


McCullers J.A.,University of Tennessee Health Science Center | McCullers J.A.,St Jude Childrens Research Hospital
Nature Reviews Microbiology | Year: 2014

Concern that a highly pathogenic virus might cause the next influenza pandemic has spurred recent research into influenza and its complications. Bacterial superinfection in the lungs of people suffering from influenza is a key element that promotes severe disease and mortality. This co-pathogenesis is characterized by complex interactions between co-infecting pathogens and the host, leading to the disruption of physical barriers, dysregulation of immune responses and delays in a return to homeostasis. The net effect of this cascade can be the outgrowth of the pathogens, immune-mediated pathology and increased morbidity. In this Review, advances in our understanding of the underlying mechanisms are discussed, and the key questions that will drive the field forwards are articulated. © 2014 Macmillan Publishers Limited. All rights reserved.


Mckinnon P.J.,St Jude Childrens Research Hospital
Nature Neuroscience | Year: 2013

Active maintenance of genome stability is a prerequisite for the development and function of the nervous system. The high replication index during neurogenesis and the long life of mature neurons highlight the need for efficient cellular programs to safeguard genetic fidelity. Multiple DNA damage response pathways ensure that replication stress and other types of DNA lesions, such as oxidative damage, do not affect neural homeostasis. Numerous human neurologic syndromes result from defective DNA damage signaling and compromised genome integrity. These syndromes can involve different neuropathology, which highlights the diverse maintenance roles that are required for genome stability in the nervous system. Understanding how DNA damage signaling pathways promote neural development and preserve homeostasis is essential for understanding fundamental brain function. © 2013 Nature America, Inc. All rights reserved.

Loading St Jude Childrens Research Hospital collaborators
Loading St Jude Childrens Research Hospital collaborators