Time filter

Source Type

Jackson A.C.,University of Manitoba | Kammouni W.,University of Manitoba | Fernyhough P.,St Boniface Hospital Research Center | Fernyhough P.,University of Manitoba
Advances in Virus Research | Year: 2011

Recent studies in an experimental model of rabies indicated that there are major structural changes in the brain involving neuronal processes that are associated with severe clinical disease. Cultured adult mouse dorsal root ganglion (DRG) neurons are a good in vitro model for studying the mechanisms involved in rabies virus-induced degeneration of neurites (axons) because, unlike other neuronal cell types, these neurons are fairly permissive to rabies virus infection. DRG neurons infected with the challenge virus standard-11 (CVS) strain of rabies virus show axonal swellings and immunostaining for 4-hydroxy-2-nonenal (4-HNE), indicating evidence of lipid peroxidation associated with oxidative stress, and also reduced axonal growth in comparison with mock-infected DRG neurons. Treatment with the antioxidant N-acetyl cysteine prevented the reduction in axonal outgrowth that occurred with CVS infection. The axonal swellings with 4-HNE-labeled puncta were found to be associated with aggregations of actively respiring mitochondria. We postulate that rabies virus infection likely induces mitochondrial dysfunction resulting in oxidative stress and degenerative changes involving neuronal processes. This mitochondrial dysfunction may be the result of either direct or indirect effects of the virus on the mitochondrial electron-transport chain or it may occur through other mechanisms. Further investigations are needed to gain a better understanding of the basic mechanisms involved in the oxidative damage associated with rabies virus infection. This information may prove helpful in the design of future therapeutic effects for this dreaded ancient disease. © 2011 Elsevier Inc.

Fernyhough P.,University of Manitoba | Fernyhough P.,St Boniface Hospital Research Center | Calcutt N.A.,University of California at San Diego
Cell Calcium | Year: 2010

Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. © 2009 Elsevier Ltd. All rights reserved.

Fernyhough P.,St Boniface Hospital Research Center | Fernyhough P.,University of Manitoba
Current Diabetes Reports | Year: 2015

Diabetic neuropathy is a dying back neurodegenerative disease of the peripheral nervous system where mitochondrial dysfunction has been implicated as an etiological factor. Diabetes (type 1 or type 2) invokes an elevation of intracellular glucose concentration simultaneously with impaired growth factor support by insulin, and this dual alteration triggers a maladaptation in metabolism of adult sensory neurons. The energy sensing pathway comprising the AMP-activated protein kinase (AMPK)/sirtuin (SIRT)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) signaling axis is the target of these damaging changes in nutrient levels, e.g., induction of nutrient stress, and loss of insulin-dependent growth factor support and instigates an aberrant metabolic phenotype characterized by a suppression of mitochondrial oxidative phosphorylation and shift to anaerobic glycolysis. There is discussion of how this loss of mitochondrial function and transition to overreliance on glycolysis contributes to the diminishment of collateral sprouting and axon regeneration in diabetic neuropathy in the context of the highly energy-consuming nerve growth cone. © 2015, Springer Science+Business Media New York.

Onuh J.O.,University of Manitoba | Girgih A.T.,University of Manitoba | Aluko R.E.,University of Manitoba | Aluko R.E.,Richardson Center for Functional Foods and Nutraceuticals | And 2 more authors.
Food Chemistry | Year: 2014

Chicken thigh and breast skin proteins were hydrolysed using alcalase or a combination of pepsin and pancreatin (PP), each at concentrations of 1-4%. The chicken skin protein hydrolysates (CSPHs) were then fractionated by membrane ultrafiltration into different molecular weight peptides (<1, 1-3, 3-5 and 5-10 kDa) and analysed for antioxidant properties. Results showed that the CSPHs had a significantly (p < 0.05) lower scavenging activity against DPPH radicals when compared to reduced glutathione. The chicken breast skin hydrolysates had significantly higher DPPH scavenging activity than the chicken thigh skin hydrolysates. DPPH scavenging and metal ion chelation increased significantly (p < 0.05) from 29-40% to 86-89%, respectively with increasing proteolytic enzyme concentration. In contrast, the antioxidant properties decreased as peptide size increased. We conclude that CSPHs and their peptide fractions may be used as ingredients in the formulation of functional foods and nutraceuticals for the control and management of oxidative stress-related diseases.© 2013 Published by Elsevier Ltd.

Chowdhury S.K.R.,St Boniface Hospital Research Center | Dobrowsky R.T.,University of Kansas | Fernyhough P.,St Boniface Hospital Research Center | Fernyhough P.,University of Manitoba
Mitochondrion | Year: 2011

Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes. © 2011 Elsevier B.V. and Mitochondria Research Society.

Discover hidden collaborations