Sporometrics Inc.

Toronto, Canada

Sporometrics Inc.

Toronto, Canada
Time filter
Source Type

O'Donnell K.,National United University | Sutton D.A.,University of Texas Health Science Center at San Antonio | Rinaldi M.G.,University of Texas Health Science Center at San Antonio | Sarver B.A.J.,University of Idaho | And 13 more authors.
Journal of Clinical Microbiology | Year: 2010

Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated with human or animal mycoses encountered in clinical microbiology laboratories. The database comprises partial sequences from three nuclear genes: translation elongation factor 1α (EF-1α), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2). These three gene fragments can be amplified by PCR and sequenced using primers that are conserved across the phylogenetic breadth of Fusarium. Phylogenetic analyses of the combined data set reveal that, with the exception of two monotypic lineages, all clinically relevant fusaria are nested in one of eight variously sized and strongly supported species complexes. The monophyletic lineages have been named informally to facilitate communication of an isolate's clade membership and genetic diversity. To identify isolates to the species included within the database, partial DNA sequence data from one or more of the three genes can be used as a BLAST query against the database which is Web accessible at FUSARIUM-ID (http://isolate.fusariumdb.org) and the Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Center (http://www.cbs.knaw.nl/fusarium). Alternatively, isolates can be identified via phylogenetic analysis by adding sequences of unknowns to the DNA sequence alignment, which can be downloaded from the two aforementioned websites. The utility of this database should increase significantly as members of the clinical microbiology community deposit in internationally accessible culture collections (e.g., CBS-KNAW or the Fusarium Research Center) cultures of novel mycosis-associated fusaria, along with associated, corrected sequence chromatograms and data, so that the sequence results can be verified and isolates are made available for future study. Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Perdomo H.,Rovira i Virgili University | Sutton D.A.,University of Texas Health Science Center at San Antonio | Garcia D.,Rovira i Virgili University | Fothergill A.W.,University of Texas Health Science Center at San Antonio | And 6 more authors.
Journal of Clinical Microbiology | Year: 2011

Some species in the polyphyletic fungal genus Acremonium are important opportunist pathogens. Determining the actual spectrum of species and their incidence in the clinical setting, however, has long been hampered because of the difficulties encountered in phenotypic species-level identification. The goal of this study was to re-identify a large number of clinical isolates morphologically and to confirm the identifications by comparing sequences of the internal transcribed spacer region of the rRNA gene of these isolates to those of type or reference strains of well-known Acremonium species. Of the 119 isolates referred to a United States reference laboratory under the name Acremonium, only 75 were identified morphologically as belonging to that genus. The remainder (44 isolates) were identified as belonging to other morphologically similar genera. The Acremonium clinical isolates were related to species of Hypocreales, Sordariales, and of an incertae sedis family of ascomycetes, Plectosphaerellaceae. A total of 50 of the 75 Acremonium isolates (67%) could be identified by molecular means, the prevalent species being Acremonium kiliense (15 isolates), A. sclerotigenum-A. egyptiacum (11 isolates), A. implicatum (7 isolates), A. persicinum (7 isolates), and A. atrogriseum (4 isolates). One of the most interesting findings of our study was that we identified several species among this large collection of clinical isolates that had not previously been reported from human infections, and we failed to confirm other Acremonium species, such as A. potronii, A. recifei, and A. strictum, that had been considered significant. The most common anatomic sites for Acremonium isolates were the respiratory tract (41.3%), nails (10.7%), and the eye (9.3%). Antifungal susceptibility testing demonstrated high MICs for all agents tested, except for terbinafine. Since numerous isolates could not be identified, we concluded that the list of opportunistic Acremonium species is far from be complete and that a considerable number of additional species will be discovered. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Perdomo H.,Rovira i Virgili University | Sutton D.A.,University of Texas Health Science Center at San Antonio | Garcia D.,Rovira i Virgili University | Fothergill A.W.,University of Texas Health Science Center at San Antonio | And 6 more authors.
Journal of Clinical Microbiology | Year: 2011

Several members of the fungal genera Phialemonium and Lecythophora are occasional agents of severe human and animal infections. These species are difficult to identify, and relatively little is known about their frequency in the clinical setting. The objective of this study was to characterize morphologically and molecularly, on the basis of the analysis of large-subunit ribosomal DNA sequences, a set of 68 clinical isolates presumed to belong to these genera. A total of 59 isolates were determined to be Phialemonium species (n = 32) or a related Cephalotheca species (n = 6) or Lecythophora species (n = 20) or a related Coniochaeta species (n = 1). Nine isolates identified to be Acremonium spp. or Phaeoacremonium spp. were excluded from further study. The most common species were Phialemonium obovatum and Phialemonium curvatum, followed by Lecythophora hoffmannii, Cephalotheca foveolata, and Lecythophora mutabilis. Copyright © 2011, American Society for Microbiology.

Cafaro M.J.,University of Wisconsin - Madison | Cafaro M.J.,University of Puerto Rico at Mayaguez | Poulsen M.,University of Wisconsin - Madison | Little A.E.F.,University of Wisconsin - Madison | And 8 more authors.
Proceedings of the Royal Society B: Biological Sciences | Year: 2011

Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungusgrowing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence. © 2010 The Royal Society.

Sigler L.,University of Alberta | Sutton D.A.,University of Texas Health Science Center at San Antonio | Gibas C.F.C.,University of Alberta | Summerbell R.C.,Sporometrics Inc. | And 2 more authors.
Medical Mycology | Year: 2010

Anamorphic members of the ascomycete family Trichocomaceae including Aspergillus, Penicillium, Paecilomyces, Geosmithia and Sagenomella have been reported from infections in canines. Six clinical isolates (five associated with infections in canines and one from a human source) demonstrated simple phialides producing conidia in long chains and were investigated for their potential relationship to Sagenomella chlamydospora, a known agent of canine disseminated mycosis. Phylogenetic analyses of internal transcribed spacer (ITS) and small subunit (SSU) region sequences revealed that all of the canine-associated isolates were distinct from Sagenomella species. The new anamorphic genus and species Phialosimplex caninus is described to accommodate the clinical isolates. Sagenomella chlamydospora and Sagenomella sclerotialis are transferred to the new genus as Phialosimplex chlamydosporus comb. nov. and Phialosimplex sclerotialis comb. nov. © 2010 ISHAM.

PubMed | University of Toronto, Sporometrics Inc., INC Research and Wayne State University
Type: Journal Article | Journal: Journal of the European Academy of Dermatology and Venereology : JEADV | Year: 2016

Onychomycosis is difficult to treat and a concern for many patients. Prevalence estimates of onychomycosis in North American clinic samples have been higher than what has been reported for general populations.A large, multicentre study was conducted to estimate the prevalence of toenail onychomycosis in the Canadian population.Patients were recruited from the offices of three dermatologists and one family physician in Ontario, Canada. Nail samples for mycological testing were obtained from normal and abnormal-looking nails. This sample of 32 193 patients includes our previous published study of 15 000 patients.Abnormal nails were observed in 4350 patients. Of these, the prevalence of culture-confirmed toenail onychomycosis was estimated to be 6.7% (95% CI, 6.41-6.96%). Following sex and age adjustments for the general population, the estimated prevalence of toenail onychomycosis in Canada was 6.4% (95% CI, 6.12%-6.65%). The distribution of fungal organisms in culture-confirmed onychomycosis was 71.9% dermatophytes, 20.4% non-dermatophyte moulds and 7.6% yeasts. Toenail onychomycosis was four times more prevalent in those over the age of 60 years than below the age of 60 years.The present data highlights that onychomycosis may be a growing medical concern among ageing patients.

De Baere T.,Ghent University | De Baere T.,Scientific Institute of Public Health | Summerbell R.,Fungal Diversity Center | Summerbell R.,Sporometrics Inc. | And 4 more authors.
Journal of Medical Microbiology | Year: 2010

A total of 95 isolates, belonging to 33 species of five dermatophyte genera, i.e. Arthroderma (15 species), Chrysosporium (two), Epidermophyton (one), Microsporum (three) and Trichophyton (12), were studied using internal transcribed spacer 2 (ITS2)-PCR-RFLP analysis (ITS2-RFLP), consisting of amplification of the ITS2 region, restriction digestion with BstUI (CG/CG) and restriction fragment length determination by capillary electrophoresis. ITS2-RFLP analysis proved to be most useful for identification of species of the genera Arthroderma, Chrysosporium and Epidermophyton, but could not distinguish between several Trichophyton species. The identification results are in agreement with established and recent taxonomical insights into the dermatophytes; for example, highly related species also had closely related and sometimes difficult-to-discriminate ITS2-RFLP patterns. In some cases, several ITS2-RFLP groups could be distinguished within species, again mostly in agreement with the taxonomic delineations of subspecies and/or genomovars, confirming the relevance of ITS2-RFLP analysis as an identification technique and as a useful taxonomic approach. © 2010 SGM.

Summerbell R.C.,Sporometrics Inc. | Summerbell R.C.,University of Toronto | Gueidan C.,Fungal Biodiversity Center | Gueidan C.,Natural History Museum in London | And 8 more authors.
Studies in Mycology | Year: 2011

Over 200 new sequences are generated for members of the genus Acremonium and related taxa including ribosomal small subunit sequences (SSU) for phylogenetic analysis and large subunit (LSU) sequences for phylogeny and DNA-based identification. Phylogenetic analysis reveals that within the Hypocreales, there are two major clusters containing multiple Acremonium species. One clade contains Acremonium sclerotigenum, the genus Emericellopsis, and the genus Geosmithia as prominent elements. The second clade contains the genera Gliomastix sensu stricto and Bionectria. In addition, there are numerous smaller clades plus two multi-species clades, one containing Acremonium strictum and the type species of the genus Sarocladium, and, as seen in the combined SSU/LSU analysis, one associated subclade containing Acremonium breve and related species plus Acremonium curvulum and related species. This sequence information allows the revision of three genera. Gliomastix is revived for five species, G. murorum, G. polychroma, G. tumulicola, G. roseogrisea, and G. masseei. Sarocladium is extended to include all members of the phylogenetically distinct A. strictum clade including the medically important A. kiliense and the protective maize endophyte A. zeae. Also included in Sarocladium are members of the phylogenetically delimited Acremonium bacillisporum clade, closely linked to the A. strictum clade. The genus Trichothecium is revised following the principles of unitary nomenclature based on the oldest valid anamorph or teleomorph name, and new combinations are made in Trichothecium for the tightly interrelated Acremonium crotocinigenum, Spicellum roseum, and teleomorph Leucosphaerina indica. Outside the Hypocreales, numerous Acremonium-like species fall into the Plectosphaerellaceae, and A. atrogriseum falls into the Cephalothecaceae. © 2011 CBS-KNAW Fungal Biodiversity Centre.

Savory E.,University of Western Ontario | Sabarinathan J.,University of Western Ontario | Sauer A.,University of Western Ontario | Scott J.A.,University of Toronto | Scott J.A.,Sporometrics Inc.
Building and Environment | Year: 2012

The growth of mould in the indoor environment is an important contributor to the development and exacerbation of atopic disease, and potentially poses other health risks. Moreover, the detection and elimination of mould have resulted in massive remedial expenditures, often without clear engineering knowledge of the nature of the moisture events that led to the damage, especially for residential light wood-frame construction. Relatively little research has considered such failure of the building enclosure as a starting point for developing practical, evidence-based construction practices to improve building performance. One research limitation concerns the use of invasive or destructive testing as the sole means to monitor mould growth in concealed assemblies, such as wall cavities, making it difficult or impossible to conduct time-course experiments to assess the performance of different materials and designs. The present paper concerns the development and testing of a new optoelectronic sensor capable of non-invasive monitoring of mould growth in concealed spaces in real-time by measuring changes in light reflectance from the sensor's active element, a membrane impregnated with mould spores. It builds upon an earlier concept [1] in which mould-impregnated cellophane coupons were attached to building surfaces, then removed and examined periodically for growth by microscopy. The new device incorporates computer-controlled measurement of mould growth, in response to the environmental conditions and, thus, functions as a remote sensor. Although primarily intended for research use, the device has the potential to be used as a post-remediation monitoring device to provide early-warning of any re-occurrence of mould growth. © 2011 Elsevier Ltd.

Alberton O.,Wageningen University | Kuyper T.W.,Wageningen University | Summerbell R.C.,Fungal Biodiversity Center | Summerbell R.C.,Sporometrics Inc.
Plant and Soil | Year: 2010

Although increasing concentrations of atmospheric CO2 are predicted to have substantial impacts on plant growth and functioning of ecosystems, there is insufficient understanding of the responses of belowground processes to such increases. We investigated the effects of different dark septate root endophytic (DSE) fungi on growth and nutrient acquisition by Pinus sylvestris seedlings under conditions of N limitation and at ambient and elevated CO2 (350 or 700 μ1 CO2 l-1). Each seedling was inoculated with one of the following species: Phialocephala fortinii (two strains), Cadophora finlandica, Chloridium paucisporum, Scytalidium vaccinii, Meliniomyces variabilis and M. vraolstadiae. The trial lasted 125 days. During the final 27 days, the seedlings were labeled with 14CO2 and 15NH4 +. We measured extraradical hyphal length, internal colonization, plant biomass, 14C allocation, and plant N and 15N content. Under elevated CO2, the biomass of seedlings inoculated with DSE fungi was on average 17% higher than in control seedlings. Simultaneously, below-ground respiration doubled or trebled, and as a consequence carbon use efficiency by the DSE fungi significantly decreased. Shoot N concentration decreased on average by 57% under elevated CO2 and was lowest in seedlings inoculated with S. vaccinii. Carbon gain by the seedlings despite reduced shoot N concentration indicates that DSE fungi increase plant nutrient use efficiency and are therefore more beneficial to the plant under elevated CO2. © The Author(s) 2009.

Loading Sporometrics Inc. collaborators
Loading Sporometrics Inc. collaborators