Olhão, Portugal


Olhão, Portugal
Time filter
Source Type

Rocha F.,University of Algarve | Dias J.,SPAROS Lda | Engrola S.,University of Algarve | Gavaia P.,University of Algarve | And 3 more authors.
British Journal of Nutrition | Year: 2015

Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M ) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [14C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [14C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles. © The Authors 2015.

Cerqueira M.,University of Algarve | Rey S.,University of Stirling | Silva T.,SPAROS Lda. | Featherstone Z.,University of Stirling | And 2 more authors.
Journal of Animal Ecology | Year: 2016

Environmental temperature gradients provide habitat structure in which fish orientate and individual thermal choice may reflect an essential integrated response to the environment. The use of subtle thermal gradients likely impacts upon specific physiological and behavioural processes reflected as a suite of traits described by animal personality. In this study, we examine the relationship between thermal choice, animal personality and the impact of infection upon this interaction. We predicted that thermal choice in Nile tilapia Oreochromis niloticus reflects distinct personality traits and that under a challenge individuals exhibit differential thermal distribution. Nile tilapia were screened following two different protocols: 1) a suite of individual behavioural tests to screen for personality and 2) thermal choice in a custom-built tank with a thermal gradient (TCH tank) ranging from 21 to 33 °C. A first set of fish were screened for behaviour and then thermal preference, and a second set were tested in the opposite fashion: thermal then behaviour. The final thermal distribution of the fish after 48 h was assessed reflecting final thermal preferendum. Additionally, fish were then challenged using a bacterial Streptococcus iniae model infection to assess the behavioural fever response of proactive and reactive fish. Results showed that individuals with preference for higher temperatures were also classified as proactive with behavioural tests and reactive contemporaries chose significantly lower water temperatures. All groups exhibited behavioural fever recovering personality-specific thermal preferences after 5 days. Our results show that thermal preference can be used as a proxy to assess personality traits in Nile tilapia and it is a central factor to understand the adaptive meaning of animal personality within a population. Importantly, response to infection by expressing behavioural fever overrides personality-related thermal choice. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society

Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2015 | Award Amount: 288.00K | Year: 2016

An important gap in continued sustainability of fish farming is the lack of a proper understanding on digestive function and aquafeeds utilization. The WiseFeed project will focus on this gap using an integrative approach and considering selected key fish species in culture, the feed composition and feeding protocols. The approach in WiseFeed is based on a collaborative effort for advancing both the fundamental physiological knowledge and practical applicability. WiseFeed will build an integrated network of research groups from the academia and partners in SME and large enterprises where the overall aim is to improve performance and sustainability of aquafeeds for fish production. WiseFeed has the following specific objectives: - Develop model that quantifies digestion, absorption and retention efficiency of selected macro nutrients in key cultured fish species - Develop software package to optimize feeding strategies - Elucidate the role and effects of specific amino acids and dietary supplements for enhancing metabolism, growth and N-retention including effects of elevated temperatures due to climate changes. The research that forms the basis for WifeFeed is funded by on-going national R&D projects that constitute the scientific and technical pillars of the current proposal. The secondments will bring external expertise to each of these R&D projects and coordinate efforts among similar and related activities. The secondments also build the competence of each of the participating researchers The practical benefits of WiseFeed will be improved production yield, reduced feeding cost and reduced N-waste from fish farms. The expected added value will be a faster advance in common objectives by facilitating progress and fulfilment of the R&D objectives for each participant. Furthermore, it is also the aim of WiseFish to establish a consolidated network beyond the framework of this proposal to give response to new challenges of the aquafeed industry.

Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: KBBE.2011.1.2-11 | Award Amount: 8.00M | Year: 2012

Sustainable development of European fish farming is dependent on the availability, environmental sustainability of feeds relying less and less on capture fisheries derived fishmeal and fish oil. The European aquaculture industry has made a determined shift towards the use of feeds based on alternative ingredients which continue to ensure the health and welfare of fish and the nutritional value of farmed seafood. However, the long term effects of such interventions and over the full life cycle of the major species farmed in Europe need to be determined. To answer this challenge, ARRAINA will define and provide complete data on the quantitative nutrient requirements of the five major fish species and develop sustainable alternative aquaculture feeds tailored to the requirements of these species with reduced levels of fish meal and fish oil. By developing innovative vectors to deliver specific nutrients, ARRAINA will increase significantly the performance at all physiological stages thus improving overall efficiency of fish production. ARRAINA will apply targeted predictive tools to assess the long-term physiological and environmental consequences of these changes in the different species. This will provide flexibility in the use of various ingredients in the formulation of feeds which are cost-efficient, environmentally friendly and which ensure production of seafood of high nutritional value and quality. ARRAINA will design and deliver new pioneering training courses in fish nutrition to increase research capacities and expertise, particularly in countries of the enlarged EU. By developing applied tools and solutions of technological interest in collaborations with SMEs, ARRAINA will further strengthen the links between the scientific community and the EU feed industry and will contribute to increase the productivity and performance of the aquaculture sector leading to competitive advantage to the whole sector at a global level.

Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: KBBE.2013.2.2-03 | Award Amount: 7.95M | Year: 2013

Vitamin D deficiency has significant implications for human health and impacts on healthy growth and development and successful aging. Fundamental knowledge gaps are barriers to implementing a safe and effective public health strategy to prevent vitamin D deficiency and optimize status. ODIN will provide the evidence to prevent vitamin D deficiency in Europe and improve nutrition and public health through food. By establishing an internationally standardized analytical platform for 25OHD, ODIN will measure the distribution of circulating 25OHD and describe the prevalence of vitamin D deficiency in Europe. Using available biobanks and databases from National nutrition surveys ODIN will delineate the relative contributions of sun and dietary sources of vitamin D to circulating 25OHD. In support of planned EFSA revisions of vitamin D recommendations, ODIN will carry out three RCT in pregnant women, children and teenagers and a fourth RCT in ethnic immigrant groups to provide experimental data to specify vitamin D intake requirements. Using dietary modeling, innovative food-based solutions to increase vitamin D in the food supply through a combination of bio-fortification of meats, fish, eggs, mushrooms and yeast will be developed and ODIN will test the efficacy and safety of these products in food-based RCT varying in scale from small product-specific trials to a large total diet study in vulnerable indigenous and immigrant sub-groups. ODIN has assembled the largest critical mass of prospective adult, pregnancy and birth cohort studies to date and will conduct meta-analyses and individual subject-level meta-regression analyses to integrate standardized data on vitamin D status, a priori defined clinical endpoints and genotype to examine relationships between vitamin D and human health, including beneficial and adverse effects, on perinatal outcomes, bone growth and body composition and allergic disease in children and cardiovascular disease and mortality in adults.

Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: KBBE.2013.3.2-02;KBBE.2013.3.6-01 | Award Amount: 11.91M | Year: 2013

Microalgae are a promising feedstock for sustainable supply of commodities and specialties for food and non-food products. Despite this potential the implementation is still limited which is mainly due to unfavourable economics. Major bottlenecks are the lack of available biomass at acceptable costs and the absence of appropriate biorefinery technologies. The 4-year MIRACLES project aims to resolve these hurdles by development of integrated, multiple-product biorefinery for valuable specialties from algae for application in food, aquafeeds and non-food products. The focus is on development and integration of mild cell disruption and environmentally friendly extraction and fractionation processes including functionality testing and product formulation based on established industrial strains. The project will also develop new technologies for optimization and monitoring of valuable products in the algal biomass during cultivation and innovative photobioreactor and harvesting technology that will enable substantial cost reduction. A new technology will be developed for CO2 concentration from the air for algal growth and new industrial algae strains for extreme locations will be selected via bioprospecting to expand the resource base for the algae industry and enable cultivation in areas less suitable for agriculture such as deserts. The work is supported by market assessment, integral biorefinery designs, techno-economic and sustainability assessment, and the creation of business plans for full valorisation of algal biomass. Integrated value chains will be demonstrated to deliver proof-of-concept and demonstrate economic feasibility. MIRACLES is an industry driven R&D and innovation project with a multidisciplinary approach aimed at generating robust business cases through technology development. The consortium has 26 partners with 11 prominent research organisations. Strong industrial leadership is guaranteed through the participation of 12 SMEs and 3 NMI/end users.

Morais S.,IRTA - Institute of Agricultural-Alimentary Research and Technology | Mendes A.C.,IPMA | Castanheira M.F.,University of Algarve | Coutinho J.,IPMA | And 6 more authors.
Aquaculture | Year: 2014

Senegalese sole is considered a species with high interest for aquaculture diversification in the South of Europe whose production has shown an important increase in recent years. However, broodstock nutrition of this species is still based on a diet of fresh feeds, which poses important sanitary risks, has variable supply and nutritional composition and contributes to the deterioration of water quality. This study was performed to test two new specifically formulated semi-moist diets for Solea senegalensis broodstock: a control diet (CTR) formulated with high quality ingredients and a further supplemented diet (PLUS), fortified with lipids, vitamins and long-chain polyunsaturated fatty acids (LC-PUFA), mainly DHA. Larvae originating from simultaneous spawns of both broodstock groups were reared in the same standard conditions up to 67. days post-hatching (dph) and effects were assessed on early ontogeny (up to first-feeding), larval (up to 17. dph) and juvenile performance. Both diets led to the production of eggs with good viability, hatching rate and fatty acid composition. The fatty acid profile reflected differences in the experimental diets, with eggs from the PLUS group presenting higher levels of both EPA and DHA, although more markedly for EPA. Furthermore, significant differences in the percentage of EPA were maintained until 7. dph, while DHA was only significantly higher in eggs and 0. dph larvae from the PLUS treatment. The expression of enzymes of the LC-PUFA biosynthesis pathway was assessed in parallel and results show that transcript levels of elovl5 and δ4fad in eggs and newly hatched larvae were affected by broodstock diet and that DHA biosynthesis capacity of Senegalese sole larvae may have been up-regulated at hatching in the CTR treatment. Further nutrient supplementation in the PLUS diet did not enhance larval survival and performance and larvae originating from this treatment were significantly smaller than their CTR counterparts at hatching and 3. dph and had lower growth up to 17. dph, probably reflecting variations in egg size between batches. However, after metamorphosis, post-larvae from the PLUS treatment quickly caught-up and after complete weaning were significantly larger than juveniles originating from the CTR broodstock. Furthermore, juveniles from the PLUS treatment had a much lower incidence of tail fin deformity. These results were surprising and should be further investigated as, although we cannot exclude a genetic effect, the results could also indicate a nutritional programming effect of broodstock diet in sole juvenile growth and quality. In addition, the results suggest that Senegalese sole larvae are capable of regulating DHA biosynthesis as early as at hatching to counterbalance lower levels of DHA in eggs. Finally, we demonstrate that the current feeding protocol of sole broodstock can be replaced by a safer formulated semi moist diet with good results. © 2014 Elsevier B.V.

PubMed | SPAROS Lda. and University of Algarve
Type: | Journal: Methods in molecular biology (Clifton, N.J.) | Year: 2015

Data analysis is essential to derive meaningful conclusions from proteomic data. This chapter describes ways of performing common data visualization and differential analysis tasks on gel-based proteomic datasets using a freely available statistical software package (R). A workflow followed is illustrated using a synthetic dataset as example.

PubMed | University of Porto, SPAROS Lda and University of Algarve
Type: Journal Article | Journal: Fish physiology and biochemistry | Year: 2016

In diet formulation for fish, it is critical to assure that all the indispensable amino acids (IAA) are available in the right quantities and ratios. This will allow minimizing dietary AA imbalances that will result in unavoidable AA losses for energy dissipation rather than for protein synthesis and growth. The supplementation with crystalline amino acids (CAA) is a possible solution to correct the dietary amino acid (AA) profile that has shown positive results for larvae of some fish species. This study tested the effect of supplementing a practical microdiet with encapsulated CAA as to balance the dietary IAA profile and to improve the capacity of Senegalese sole larvae to utilize AA and maximize growth potential. Larvae were reared at 19C under a co-feeding regime from mouth opening. Two microdiets were formulated and processed as to have as much as possible the same ingredients and proximate composition. The control diet (CTRL) formulation was based on commonly used protein sources. A balanced diet (BAL) was formulated as to meet the ideal IAA profile defined for Senegalese sole: the dietary AA profile was corrected by replacing 4% of encapsulated protein hydrolysate by CAA. The in vivo method of controlled tube-feeding was used to assess the effect on the larvae capacity to utilize protein, during key developmental stages. Growth was monitored until 51 DAH. The supplementation of microdiets with CAA in order to balance the dietary AA had a positive short-term effect on the Senegalese sole larvae capacity to retain protein. However, that did not translate into increased growth. On the contrary, larvae fed a more imbalanced (CTRL group) diet attained a better performance. Further studies are needed to ascertain whether this was due to an effect on the voluntary feed intake as a compensatory response to the dietary IAA imbalance in the CTRL diet or due to the higher content of tryptophan in the BAL diet.

PubMed | SPAROS Lda, University of Glasgow and University of Algarve
Type: | Journal: Fish physiology and biochemistry | Year: 2016

Low water temperatures during winter are common in farming of gilthead sea bream in the Mediterranean. This causes metabolic disorders that in extreme cases can lead to a syndrome called winter disease. An improved immunostimulatory nutritional status might mitigate the effects of this thermal metabolic stress. A trial was set up to assess the effects of two different diets on gilthead sea bream physiology and nutritional state through plasma proteome and metabolites. Four groups of 25 adult gilthead sea bream were reared during winter months, being fed either with a control diet (CTRL) or with a diet called winter feed (WF). Proteome results show a slightly higher number of proteins upregulated in plasma of fish fed the WF. These proteins are mostly involved in the immune system and cell protection mechanisms. Lipid metabolism was also affected, as shown both by plasma proteome and by the cholesterol plasma levels. Overall, the winter feed diet tested seems to have positive effects in terms of fish condition and nutritional status, reducing the metabolic effects of thermal stress.

Loading SPAROS Lda collaborators
Loading SPAROS Lda collaborators