Space Systems Loral LLC

Dulles Town Center, VA, United States

Space Systems Loral LLC

Dulles Town Center, VA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Space Systems Loral LLC | Date: 2016-01-13

Waveguide hinges are provided that allow for a substantially continuous RF waveguide to be formed through the hinge when the hinge elements are in a particular relative rotational configuration with respect to one another; the substantially continuous RF waveguide is not formed when the hinge elements are in various other relative rotational configurations. Such waveguide hinges allow for waveguide elements to be repositioned during periods when RF energy is not being transmitted.


Patent
Space Systems Loral LLC | Date: 2016-05-24

A communication platform such as a spacecraft, airborne platform, or terrestrial line of site wireless platform is provided with adaptive digital beamforming. The satellite digitizes a full spectrum allocation for digital channelization. A channelization engine can determine a particular user or user group associated with an uplink signal. In this manner, the communication platform can apply different processing based on the user or group associated with a signal. For example, the communication platform receives uplink signals associated with a first user group and a second user group in one embodiment. The platform dynamically generates one or more spot beams for the first user group and the second group. The platform discriminates the uplink signals to apply frequency hopping for the downlink frequency channel assignments to the second user group while the downlink frequency channel assignments for the first user group remain fixed.


Patent
Space Systems Loral LLC | Date: 2016-05-02

A wireless communication platform utilizes flexible bandwidth assignment to re-allocate bandwidth between spot beams. The platform may assign a first combination of frequency and polarization (FP) to a first spot beam and a second combination of frequency and polarization to a second spot beam that is adjacent and at least partially overlapping the first spot beam. The platform may assign to the first spot beam a reserved combination of frequency and polarization during a first time period, and at second time, assign the reserved combination to the second spot beam. The platform may also assign the reserved combination simultaneously to adjacent spot beams by managing user of the reserved combination by geographically isolated terminals in the spot beams. The platform may further assign different portions of the reserved combination to adjacent spot beams without geographical limitations.


Patent
Space Systems Loral LLC | Date: 2016-07-27

A wireless communication system includes frequency reuse between terminals in common coverage regions using a multiple satellite architecture with spatial diversity. Different terminals may be associated with different ones of the satellites such that a common frequency can be reused by the different terminals. A gateway may communicate with a first satellite using a feeder beam having an overlapping geographic coverage region with a user beam used for communication between a set of user terminals and a second satellite. Spatial diversity is provided between the satellites, and the feeder beam and the user beam operate at common frequencies within the overlapping coverage region. In this manner, the bandwidth of both satellites at the common coverage region is used to increase the available capacity.


Patent
Space Systems Loral LLC | Date: 2017-02-22

A spacecraft includes a payload subsystem, the payload subsystem including a phased array of feed elements configured to illuminate an antenna reflector, a beam forming network (BFN) disposed proximate to the array of feed elements, and a plurality of power amplifiers disposed between the BFN and the array of feed elements. The BFN includes a plurality of variable amplitude and phase adjusting arrangements disposed between (i) m:1 power combiners that are communicatively coupled with the power amplifiers and (ii) at least one 1:n power splitter, where m is greater than 1, and n is greater than 2


Patent
Space Systems Loral LLC | Date: 2017-02-28

A spacecraft includes a payload subsystem including a digital channelizer. The digital channelizer provides at least a portion of spacecraft command or telemetry functionality. The spacecraft may optionally also include a telemetry and command (T&C) subsystem, the T&C subsystem including one or more of a command receiver, a command decoder, a telemetry encoder and a telemetry transmitter. The digital channelizer may be communicatively coupled with at least one of the command receiver, the command decoder, the telemetry transmitter and the telemetry encoder.


Interference information is obtained from one or more interference information sources (502, 504, 506, 508, 510, 512, 514) external to a particular communication system (100, 500), wherein the interference information is indicative of non-weather related interference that can adversely affect efficacy of the particular communication system (100, 500). Configurable link parameters of the particular communication system (100, 500) are dynamically adapted and/or resources of the particular communication system (100, 500) are dynamically allocated based on the interference information obtained from the interference information source(s) (502, 504, 506, 508, 510, 512, 514) that is/are external to the particular communication system (100, 500). Such embodiments can advantageously be performed proactively to prevent or mitigate adverse effects of non-weather related interference on the efficacy of the particular communication system (100, 500).


Patent
Space Systems Loral LLC | Date: 2016-02-25

Design of a 3-D truss structure, including a plurality of coupling nodes and a plurality of struts, is optimized by performing a quantitative optimization of an objective function corresponding to a figure of merit of the design. The quantitative optimization includes: generating a finite element analysis model, the analysis model a 3-D lattice mesh of strut-like finite elements; computing, with the finite element analysis model, a value for the objective function; and optimizing the objective function by executing at least two cycles of an optimization loop. The optimization loop includes a) computing a respective parameter of each strut-like finite element; b) deleting, from the finite element analysis model, selected finite elements for which a resulting mechanical property is less than a threshold; (c) computing an updated value for the objective function; and repeating the optimization loop until the objective function is within a desired tolerance of the specified value.


Patent
Space Systems Loral LLC | Date: 2016-02-25

A spacecraft includes a 3-D closed truss structure including at least four coupling nodes and at least six strut elements, attached together by a plurality of joints, each coupling node including at least two legs, each strut element disposed between and attached with a respective pair of the plurality of coupling nodes. Each coupling node is attached, at respective ones of the plurality of joints, with at least two strut elements. Each strut element is attached at a first end with a first leg of a first coupling node and is attached at a second end with a second leg of a second coupling node, the first leg being substantially longer than the second leg.


Patent
Space Systems Loral LLC | Date: 2016-04-13

A first satellite and a second satellite are configured to be disposed together, in a launch configuration, for launch by a single launch vehicle. The launch vehicle includes a primary payload adapter and the first satellite includes a secondary payload adapter. In the launch configuration, the first satellite is mechanically coupled with the primary payload adapter and the second satellite is mechanically coupled with the secondary payload adapter. Following injection into a first orbit by the launch vehicle, the first satellite separates from the primary payload adapter while the second satellite is mechanically coupled with the secondary payload adapter. The second satellite is detached from the secondary payload adapter of the first satellite only after an orbit transfer maneuver executed by a propulsions system of the first satellite. In the launch configuration, the mass of the second satellite is at least 30% of the mass of the first satellite.

Loading Space Systems Loral LLC collaborators
Loading Space Systems Loral LLC collaborators