SP Processum AB

Örnsköldsvik, Sweden

SP Processum AB

Örnsköldsvik, Sweden
SEARCH FILTERS
Time filter
Source Type

Cavka A.,Umeå University | Martin C.,Umeå University | Alriksson B.,SP Processum AB | Mortsell M.,SEKAB E Technology AB | Jonsson L.J.,Umeå University
Bioresource Technology | Year: 2015

Conditioning with reducing agents allows alleviation of inhibition of biocatalytic processes by toxic by-products generated during biomass pretreatment, without necessitating the introduction of a separate process step. In this work, conditioning of steam-pretreated spruce with sodium sulfite made it possible to lower the yeast and enzyme dosages in simultaneous saccharification and fermentation (SSF) to 1. g/L and 5. FPU/g WIS, respectively. Techno-economic evaluation indicates that the cost of sodium sulfite can be offset by benefits resulting from a reduction of either the yeast load by 0.68. g/L or the enzyme load by 1. FPU/g WIS. As those thresholds were surpassed, inclusion of conditioning can be justified. Another potential benefit results from shortening the SSF time, which would allow reducing the bioreactor volume and result in capital savings. Sodium sulfite conditioning emerges as an opportunity to lower the financial uncertainty and compensate the overall investment risk for commercializing a softwood-to-ethanol process. © 2015 The Authors.


Cavka A.,Umeå University | Alriksson B.,SP Processum AB | Rose S.H.,Stellenbosch University | Van Zyl W.H.,Stellenbosch University | Jonsson L.J.,Umeå University
Journal of Industrial Microbiology and Biotechnology | Year: 2014

Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention. © 2014 Society for Industrial Microbiology and Biotechnology.


Holmgren K.H.,Swedish Defence Research Agency | Holmgren K.H.,SP Processum AB | Gustafsson T.,Swedish Defence Research Agency | Ostin A.,Swedish Defence Research Agency
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2016

This report describes a method developed for extracting nerve gas markers such as phosphonic acids from urine and other aqueous samples. It involves single-step microextraction with chemosorption to hollow fibers that have been pre-soaked in a solution containing a derivatization reagent (3,5 triflouro methyl benzene diazomethane). The derivatives it forms with phosphonic acids can be sensitively detected by mass spectrometric detectors operating in negative chemical ionization (NCI) mode. Limits of quantification obtained in analyses of water and urine extracts by GC/MS in negative chemical ionization and selected ion monitoring mode were 0.1–10 and 0.5–10 ng/mL, respectively. Pentaflourophenyl diazomethane can also be used as a derivatization reagent, and the micro-extracts (which generate low background signals) can be sensitively analyzed by GC–MS/MS in NCI selected reaction monitoring (SRM) mode, using two specific transitions for both reagents. Thus, this sensitive approach can be flexibly modified to obtain confirmatory information, or address potential problems caused by interferences in some samples. © 2016 Elsevier B.V.


Alriksson B.,SP Processum AB | Hornberg A.,SP Processum AB | Gudnason A.E.,Saebyli Ehf | Knobloch S.,Matis Ltd. | And 2 more authors.
Cellulose Chemistry and Technology | Year: 2014

Increased demand of fish in combination with overexploitation of the fish stocks of the oceans has led to an increased production of fish through aquaculture. Today, fishmeal is the main protein source in fish feed for most aquaculture species. However, fishmeal is soon expected to fall short of demand as its production is associated with environmental problems. This shortage must therefore be met by sustainable alternative protein sources. Protein-rich microorganisms (i.e. Single cell protein) is an interesting option as a fishmeal substitute in fish feed which, in addition, can be produced as an important co-product in wood-based biorefineries. In the current study, four different microorganisms were cultivated on five different residual streams from Swedish wood-based biorefineries. Screening experiments were carried out in shake flasks, optimization experiments in benchtop bioreactors, and scale-up experiments were performed in a 50-litre pilot bioreactor. In addition, a demo-scale experiment was carried out in the Swedish Biorefinery Demo Plant. Microbial biomass from the scale-up experiments was collected and used for production of different fish feed formulations which, in turn, were used in feeding trials of the freshwater fish Tilapia. Fishes fed with feed, in which part of the fishmeal had been substituted with Single cell protein, showed similar or better growth than fishes fed with a fishmeal-based control feed.


Johansson E.,Chalmers University of Technology | Johansson E.,SP Processum AB | Xiros C.,Chalmers University of Technology | Larsson C.,Chalmers University of Technology
BMC Biotechnology | Year: 2014

Background: Lignocellulosic materials are a diverse group of substrates that are generally scarce in nutrients, which compromises the tolerance and fermentation performance of the fermenting organism. The problem is exacerbated by harsh pre-treatment, which introduces sugars and substances inhibitory to yeast metabolism. This study compares the fermentation behaviours of two yeast strains using different types of lignocellulosic substrates; high gravity dilute acid spruce hydrolysate (SH) and spent sulphite liquor (SSL), in the absence and presence of yeast extract. To this end, the fermentation performance, energy status and fermentation capacity of the strains were measured under different growth conditions.Results: Nutrient supplementation with yeast extract increased sugar uptake, cell growth and ethanol production in all tested fermentation conditions, but had little or no effect on the energy status, irrespective of media. Nutrient-supplemented medium enhanced the fermentation capacity of harvested cells, indicating that cell viability and reusability was increased by nutrient addition.Conclusions: Although both substrates belong to the lignocellulosic spruce hydrolysates, their differences offer specific challenges and the overall yields and productivities largely depend on choice of fermenting strain. © 2014 Johansson et al.; licensee BioMed Central Ltd.


PubMed | SEKAB E Technology AB, SP Processum AB and Umeå University
Type: | Journal: Bioresource technology | Year: 2015

Conditioning with reducing agents allows alleviation of inhibition of biocatalytic processes by toxic by-products generated during biomass pretreatment, without necessitating the introduction of a separate process step. In this work, conditioning of steam-pretreated spruce with sodium sulfite made it possible to lower the yeast and enzyme dosages in simultaneous saccharification and fermentation (SSF) to 1g/L and 5FPU/g WIS, respectively. Techno-economic evaluation indicates that the cost of sodium sulfite can be offset by benefits resulting from a reduction of either the yeast load by 0.68g/L or the enzyme load by 1FPU/g WIS. As those thresholds were surpassed, inclusion of conditioning can be justified. Another potential benefit results from shortening the SSF time, which would allow reducing the bioreactor volume and result in capital savings. Sodium sulfite conditioning emerges as an opportunity to lower the financial uncertainty and compensate the overall investment risk for commercializing a softwood-to-ethanol process.


PubMed | SP Processum AB, Umeå University and Borregaard
Type: | Journal: Biotechnology for biofuels | Year: 2015

Pretreatment of lignocellulose for biochemical conversion commonly results in formation of by-products that inhibit microorganisms and cellulolytic enzymes. To make bioconversion processes more efficient, inhibition problems can be alleviated through conditioning. Ozone is currently commercially employed in pulp and paper production for bleaching, as it offers the desirable capability to disrupt unsaturated bonds in lignin through an ionic reaction known as ozonolysis. Ozonolysis is more selective towards lignin than cellulose, for instance, when compared to other oxidative treatment methods, such as Fentons reagent. Ozone may thus have desirable properties for conditioning of pretreated lignocellulose without concomitant degradation of cellulose or sugars. Ozone treatment of SO2-impregnated steam-pretreated Norway spruce was explored as a potential approach to decrease inhibition of yeast and cellulolytic enzymes. This novel approach was furthermore compared to some of the most effective methods for conditioning of pretreated lignocellulose, i.e., treatment with alkali and sodium dithionite.Low dosages of ozone decreased the total contents of phenolics to about half of the initial value and improved the fermentability. Increasing ozone dosages led to almost proportional increase in the contents of total acids, including formic acid, which ultimately led to poor fermentability at higher ozone dosages. The decrease of the contents of furfural and 5-hydroxymethylfurfural was inversely proportional (R (2)>0.99) to the duration of the ozone treatment, but exhibited no connection with the fermentability. Ozone detoxification was compared with other detoxification methods and was superior to treatment with Fentons reagent, which exhibited no positive effect on fermentability. However, ozone detoxification was less efficient than treatment with alkali or sodium dithionite. High ozone dosages decreased the inhibition of cellulolytic enzymes as the glucose yield was improved with 13% compared to that of an untreated control.Low dosages of ozone were beneficial for the fermentation of steam-pretreated Norway spruce, while high dosages decreased the inhibition of cellulolytic enzymes by soluble components in the pretreatment liquid. While clearly of interest for conditioning of lignocellulosic hydrolysates, future challenges include finding conditions that provide beneficial effects both with regard to enzymatic saccharification and microbial fermentation.

Loading SP Processum AB collaborators
Loading SP Processum AB collaborators