Entity

Time filter

Source Type


Bergman J.,Karolinska Institutet | Arewang C.-J.,Astrazeneca | Svensson P.H.,SP Process Development | Svensson P.H.,KTH Royal Institute of Technology
Journal of Organic Chemistry | Year: 2014

Oxidation of the spirocyclic oxindole derivative, isamic acid 1, led to decarboxylation and ring expansion to quinazolino[4,5-b]quinazoline-6,8-dione 7 rather than, as previously believed, its isomer 6. The structure of 7 was confirmed by X-ray crystallography. Condensation of isatin (indole-2,3-dione) and 2-aminobenzamide led to the spirocyclic molecule, spiro[3H-indole-3,2′(1H)quinazoline]-2,4′(1H,3H)dione 8, which was also identified as an intermediate in the oxidation of isamic acid. Mild hydrolysis of 7 gave the 10-membered molecule 22. Isamic acid could easily be converted to N-nitrosoisamic acid, which when heated in ethanol underwent a ring expansion to a hydroximino derivative, 38, of compound 6. The structure of 38 was confirmed by X-ray crystallography. © 2014 American Chemical Society. Source


Malmquist J.,Astrazeneca | Malmquist J.,Novandi Chemistry AB | Bernlind A.,SP Process Development | Lindberg S.,Astrazeneca | Lindberg S.,Swedish Defence Research Agency
Journal of Labelled Compounds and Radiopharmaceuticals | Year: 2013

A method for the preparation of [3'-3H]-4-(2'-chloro-6'- hydroxyphenyl)-2-thioxo-3,4-dihydro-1H-indeno[1,2-d]pyrimidin-5 (2H)-one (1), a TRPA1 inhibitor, was developed for the evaluation of imaging properties of a class of TRPA1 inhibitors. 1 was prepared via tritiation of a protected benzaldehyde followed by a tetrachlorosilane catalyzed multicomponent one-step fusion and was obtained at a specific activity of 0.9 TBq/mmol. A 3H-NMR spectrum on 13.5MBq at 75 μM was recorded. Copyright © 2013 John Wiley & Sons, Ltd. Source


Boge L.,SP Technical Research Institute of Sweden | Boge L.,Chalmers University of Technology | Bysell H.,SP Technical Research Institute of Sweden | Ringstad L.,SP Technical Research Institute of Sweden | And 7 more authors.
Langmuir | Year: 2016

The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded with peptide LL-37 displayed a loss in its broad-spectrum bactericidal properties. AMP-loaded hexosomes showed a reduction in antimicrobial activity. © 2016 American Chemical Society. Source


Svard M.,University of Limerick | Svard M.,KTH Royal Institute of Technology | Hjorth T.,KTH Royal Institute of Technology | Bohlin M.,SP Process Development | And 2 more authors.
Journal of Chemical and Engineering Data | Year: 2016

The solid-liquid solubility of the title compound has been measured by a gravimetric method in five pure organic solvents over the temperature range (283 to 323) K. The melting temperature and associated enthalpy of fusion have been determined by differential scanning calorimetry (DSC), and the heat capacity of the solid and the melt have been determined over a range of temperatures by means of temperature-modulated DSC. Melting data and the extrapolated difference in heat capacity between the melt and the solid have been used to calculate the Gibbs energy, enthalpy, and entropy of fusion and the ideal solubility from below ambient temperature to the melting point. On the basis of estimated activity coefficients at equilibrium, solutions in all the five solvents are shown to exhibit positive deviation from Raoult's law. The highest mole fraction solubility is observed in methanol, and all van't Hoff solubility curves are nonlinear. Solubility data is well correlated by a recently proposed semiempirical regression model. © 2016 American Chemical Society. Source


Koch D.,Ronninge College | Koch E.,Karo Bio | Desarbre E.,Basilea Pharmaceutica Ltd. | Stensland B.,Astrazeneca | And 2 more authors.
European Journal of Organic Chemistry | Year: 2016

2,2′-Biindolyl has been condensed with aromatic and aliphatic aldehydes and products featuring 10-membered rings have been obtained. Thus, benzaldehyde gave compound 24a as the primary product, which readily underwent transannular oxidative coupling to 25a. The structures of both compounds were confirmed by X-ray crystallography. The product from 2,2′-biindolyl and formaldehyde under strongly acidic conditions was slightly different leading to compound 11, whose structure also was confirmed by X-ray crystallography. In this case, two molecules of 2,2′-biindolyl reacted with six molecules of formaldehyde. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Discover hidden collaborations