Time filter

Source Type

Brown D.R.,Southwest Pennsylvania Environmental Health Project | Lewis C.,Southwest Pennsylvania Environmental Health Project | Weinberger B.I.,Southwest Pennsylvania Environmental Health Project
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering | Year: 2015

Directional drilling and hydraulic fracturing of shale gas and oil bring industrial activity into close proximity to residences, schools, daycare centers and places where people spend their time. Multiple gas production sources can be sited near residences. Health care providers evaluating patient health need to know the chemicals present, the emissions from different sites and the intensity and frequency of the exposures. This research describes a hypothetical case study designed to provide a basic model that demonstrates the direct effect of weather on exposure patterns of particulate matter smaller than 2.5 microns (PM2.5) and volatile organic chemicals (VOCs). Because emissions from unconventional natural gas development (UNGD) sites are variable, a short term exposure profile is proposed that determines 6-hour assessments of emissions estimates, a time scale needed to assist physicians in the evaluation of individual exposures. The hypothetical case is based on observed conditions in shale gas development in Washington County, Pennsylvania, and on estimated emissions from facilities during gas development and production. An air exposure screening model was applied to determine the ambient concentration of VOCs and PM2.5 at different 6-hour periods of the day and night. Hourly wind speed, wind direction and cloud cover data from Pittsburgh International Airport were used to calculate the expected exposures. Fourteen months of daily observations were modeled. Higher than yearly average source terms were used to predict health impacts at periods when emissions are high. The frequency and intensity of exposures to PM2.5 and VOCs at a residence surrounded by three UNGD facilities was determined. The findings show that peak PM2.5 and VOC exposures occurred 83 times over the course of 14 months of well development. Among the stages of well development, the drilling, flaring and finishing, and gas production stages produced higher intensity exposures than the hydraulic fracturing stage. Over one year, compressor station emissions created 118 peak exposure levels and a gas processing plant produced 99 peak exposures over one year. The screening model identified the periods during the day and the specific weather conditions when the highest potential exposures would occur. The periodicity of occurrence of extreme exposures is similar to the episodic nature of the health complaints reported in Washington County and in the literature. This study demonstrates the need to determine the aggregate quantitative impact on health when multiple facilities are placed near residences, schools, daycare centers and other locations where people are present. It shows that understanding the influence of air stability and wind direction is essential to exposure assessment at the residential level. The model can be applied to other emissions and similar sites. Profiles such as this will assist health providers in understanding the frequency and intensity of the human exposures when diagnosing and treating patients living near unconventional natural gas development. Copyright © Taylor & Francis Group, LLC. Source

Brown D.,Southwest Pennsylvania Environmental Health Project | Weinberger B.,Southwest Pennsylvania Environmental Health Project | Lewis C.,Southwest Pennsylvania Environmental Health Project | Bonaparte H.,Southwest Pennsylvania Environmental Health Project
Reviews on Environmental Health | Year: 2014

Case study descriptions of acute onset of respiratory, neurologic, dermal, vascular, abdominal, and gastrointestinal sequelae near natural gas facilities contrast with a subset of emissions research, which suggests that there is limited risk posed by unconventional natural gas development (UNGD). An inspection of the pathophysiological effects of acute toxic actions reveals that current environmental monitoring protocols are incompatible with the goal of protecting the health of those living and working near UNGD activities. The intensity, frequency, and duration of exposures to toxic materials in air and water determine the health risks to individuals within a population. Currently, human health risks near UNGD sites are derived from average population risks without adequate attention to the processes of toxicity to the body. The objective of this paper is to illustrate that current methods of collecting emissions data, as well as the analyses of these data, are not sufficient for accurately assessing risks to individuals or protecting the health of those near UNGD sites. Focusing on air pollution impacts, we examined data from public sources and from the published literature. We compared the methods commonly used to evaluate health safety near UNGD sites with the information that would be reasonably needed to determine plausible outcomes of actual exposures. Such outcomes must be based on the pathophysiological effects of the agents present and the susceptibility of residents near these sites. Our study has several findings. First, current protocols used for assessing compliance with ambient air standards do not adequately determine the intensity, frequency or durations of the actual human exposures to the mixtures of toxic materials released regularly at UNGD sites. Second, the typically used periodic 24-h average measures can underestimate actual exposures by an order of magnitude. Third, reference standards are set in a form that inaccurately determines health risk because they do not fully consider the potential synergistic combinations of toxic air emissions. Finally, air dispersion modeling shows that local weather conditions are strong determinates of individual exposures. Appropriate estimation of safety requires nested protocols that measure real time exposures. New protocols are needed to provide 1) continuous measures of a surrogate compound to show periods of extreme exposure; 2) a continuous screening model based on local weather conditions to warn of periodic high exposures; and 3) comprehensive detection of chemical mixtures using canisters or other devices that capture the major components of the mixtures. © 2014 by De Gruyter 2014. Source

Discover hidden collaborations