Time filter

Source Type

Russian Federation, Russia

Suslova K.G.,Southern Urals Biophysics Institute SUBI | Sokolova A.B.,Southern Urals Biophysics Institute SUBI | Khokhryakov V.V.,Southern Urals Biophysics Institute SUBI | Miller S.C.,University of Utah
Health Physics | Year: 2012

The alpha spectrometry measurements of specific activity of 238Pu and 239Pu in urine from bioassay examinations of 1,013 workers employed at the radiochemical and plutonium production facilities of the Mayak Production Association and in autopsy specimens of lung, liver, and skeleton from 85 former nuclear workers who died between 1974-2009, are summarized. The accumulation fraction of 238Pu in the body and excreta has not changed with time in workers involved in production of weapons-grade plutonium production (e.g., the plutonium production facility and the former radiochemical facility). The accumulation fraction of 239Pu in individuals exposed to plutonium isotopes at the newer Spent Nuclear Fuel Reprocessing Plant ranged from 0.13% up to 27.5% based on the autopsy data. No statistically significant differences between 238Pu and 239Pu in distribution by the main organs of plutonium deposition were found in the Mayak workers. Based on the bioassay data, the fraction of 238Pu activity in urine is on average 38-69% of the total activity of 238Pu and 239Pu, which correlates with the isotopic composition in workplace air sampled at the Spent Nuclear Fuel Reprocessing Plant. In view of the higher specific activity of 238Pu, the contribution of 238Pu to the total internal dose, particularly in the skeleton and liver, might be expected to continue to increase, and continued surveillance is recommended. © 2012 Health Physics Society.

Suslova K.G.,Southern Urals Biophysics Institute SUBI | Sokolova A.B.,Southern Urals Biophysics Institute SUBI | Efimov A.V.,Southern Urals Biophysics Institute SUBI | Miller S.C.,University of Utah
Health Physics | Year: 2013

Americium-241(241Am) is the second most significant radiation hazard after 239Pu at some of the Mayak Production Association facilities. This study summarizes current data on the accumulation, distribution, and excretion of americium compared with plutonium in different organs from former Mayak PA workers. Americium and plutonium were measured in autopsy and bioassay samples and correlated with the presence or absence of chronic disease and with biological transportability of the aerosols encountered at different workplaces. The relative accumulation of 241Am was found to be increasing in the workers over time. This is likely from 241Pu that increases with time in reprocessed fuel and from the increased concentrations of 241Am and 241Pu in inhaled alpha-active aerosols. While differences were observed in lung retention with exposures to different industrial compounds with different transportabilities (i.e., dioxide and nitrates), there were no significant differences in lung retention between americium and plutonium within each transportability group. In the non-pulmonary organs, the highest ratios of 241Am/ 241Am + ΣPu were observed in the skeleton. The relative ratios of americium in the skeleton versus liver were significantly greater than for plutonium. The relative amounts of americium and plutonium found in the skeleton compared with the liver were even greater in workers with documented chronic liver diseases. Excretion rates of 241Am in "healthy" workers were estimated using bioassay and autopsy data. The data suggest that impaired liver function leads to reduced hepatic Am retention, leading to increased 241Am excretion. Copyright © 2013 Health Physics Society.

Suslova K.G.,Southern Urals Biophysics Institute SUBI | Khokhryakov V.F.,Southern Urals Biophysics Institute SUBI | Sokolova A.B.,Southern Urals Biophysics Institute SUBI | Miller S.C.,University of Utah
Health Physics | Year: 2012

Plutonium-238 ( 238Pu) has a half-life of about 87.7 y and thus a higher specific activity than 239Pu. It is used in radioisotope thermoelectric generators and is a substantial source of plutonium alpha-radiation in spent nuclear fuels. Early animal studies demonstrated differences in the biokinetics of inhaled oxides of 238Pu and 239Pu with 238Pu having a substantially more rapid translocation from the lungs to the systemic organs, particularly the skeleton. This resulted in the predominant occurrence of skeletal cancers in animals exposed to 238Pu oxides but lung cancers in those with exposures to 239Pu oxides. The anatomical distribution of osteogenic sarcomas seen in animal studies was similar to that observed with 239Pu and also in plutonium workers but differed from naturally occurring tumors. The in vivo "solubility" of 238Pu has been associated with the relative amounts of 238Pu/ 239Pu in the particles and calcination temperatures during the preparation of the dioxides. There is experimental evidence of in vivo 238Pu particle fragmentation attributed to nuclear recoil during radioactive decay. The resulting conversion of microparticles to nanoparticles may alter their interactions with macrophages and transport across epithelial barriers. There are few documented cases of human exposures, but the biokinetics appeared to depend on the chemical and physical nature of the aerosols. Robust human biokinetic and dosimetric models have not been developed, due in part to the lack of data. With the acceleration of nuclear technologies and the greater demand for reprocessing and/or disposal of spent nuclear fuels, the potential for human exposure to 238Pu will likely increase in the future. © 2012 Health Physics Society.

Moseeva M.B.,Southern Urals Biophysics Institute SUBI | Azizova T.V.,Southern Urals Biophysics Institute SUBI | Grigoryeva E.S.,Southern Urals Biophysics Institute SUBI | Haylock R.,Public Health England
Radiation and Environmental Biophysics | Year: 2014

The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure. © Springer-Verlag Berlin Heidelberg 2014.

Simonetto C.,Helmholtz Center Munich | Azizova T.V.,Southern Urals Biophysics Institute SUBI | Grigoryeva E.S.,Southern Urals Biophysics Institute SUBI | Kaiser J.C.,Helmholtz Center Munich | And 2 more authors.
PLoS ONE | Year: 2014

We present an updated analysis of incidence and mortality from atherosclerotic induced ischemic heart diseases in the cohort of workers at the Mayak Production Association (PA). This cohort constitutes one of the most important sources for the assessment of radiation risk. It is exceptional because it comprises information on several other risk factors. While most of the workers have been exposed to external gamma radiation, a large proportion has additionally been exposed to internal radiation from inhaled plutonium. Compared to a previous study by Azizova et al. 2012, the updated dosimetry system MWDS-2008 has been applied and methods of analysis have been revised. We extend the analysis of the significant incidence risk and observe that main detrimental effects of external radiation exposure occur after more than about 30 years. For mortality, significant risk was found in males with an excess relative risk per dose of 0.09 (95% CI: 0.02; 0.16) Gy-1 while risk was insignificant for females. With respect to internal radiation exposure no association to risk could be established. © 2014 Simonetto et al.

Discover hidden collaborations