Time filter

Source Type

Lyovkina Y.V.,Southern Ural Biophysics Institute | Miller S.C.,University of Utah | Romanov S.A.,Southern Ural Biophysics Institute | Krahenbuhl M.P.,University of Utah | Belosokhov M.V.,Southern Ural Biophysics Institute
Health Physics | Year: 2010

The purpose of this study was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, the quantitative relationships of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in humans as well as other cases with different exposure patterns and types of plutonium. Copyright © 2010 Health Physics Society.


Paunesku T.,Northwestern University | Wanzer M.B.,Northwestern University | Kirillova E.N.,Southern Ural Biophysics Institute | Muksinova K.N.,Southern Ural Biophysics Institute | And 7 more authors.
Health Physics | Year: 2012

Several recent efforts in the radiation biology community worldwide have amassed records and archival tissues from animals exposed to different radionuclides and external beam irradiation. In most cases, these samples come from lifelong studies on large animal populations conducted in national laboratories and equivalent institutions throughout Europe, North America, and Japan. While many of these tissues were used for histopathological analyses, much more information may still be obtained from these samples. A new technique suitable for imaging of these tissues is x-ray fluorescence microscopy (XFM). Following development of third generation synchrotrons, XFM has emerged as an ideal technique for the study of metal content, speciation, and localization in cells, tissues, and organs. Here the authors review some of the recent XFM literature pertinent to tissue sample studies and present examples of XFM data obtained from tissue sections of beagle dog samples, which show that the quality of archival tissues allows XFM investigation. Copyright © 2012 Health Physics Society.


PubMed | Southern Ural Biophysics Institute, Public Health England and Global Dosimetry
Type: | Journal: Radiation protection dosimetry | Year: 2016

Lung doses resulting from inhalation of plutonium aerosols are highly dependent on the assumed rate of particle clearance, which occurs by two competing processes: (1) particle transport clearance to the alimentary tract and to the thoracic lymph nodes and (2) clearance to systemic tissues, which occurs by dissolution of particles in lung fluid followed by uptake to blood, which is a process collectively known as absorption. Unbiased and accurate estimates of the values of lung absorption parameters are required to obtain reliable estimates of lung dose, particularly those inferred from urine bioassay. Parameter values governing the rate of absorption are best estimated from data, such as autopsy measurements of plutonium in the lungs and systemic tissues, which directly relate to the exposed workers of interest. However, because the mathematical models that determine clearance from the lungs and systemic tissues are complex and consist of many parameters, estimates of model parameter values are subject to significant uncertainties. With this in mind, this paper uses a Bayesian approach to estimate one of the most important dissolution parameters: the slow rate of dissolution. This is estimated for both plutonium nitrate and plutonium oxide bearing aerosols in the lungs of former workers of the Mayak Production Association. A value of 2.6 10

Loading Southern Ural Biophysics Institute collaborators
Loading Southern Ural Biophysics Institute collaborators