Entity

Time filter

Source Type

Los Angeles, CA, United States

Eiguren-Fernandez A.,University of California at Los Angeles | Eiguren-Fernandez A.,Southern California Particle Center | Di Stefano E.,University of California at Los Angeles | Di Stefano E.,Southern California Particle Center | And 12 more authors.
Journal of the Air and Waste Management Association | Year: 2015

The potential adverse health effects of PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT)- and dihydrobenzoic acid (DHBA)-based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities, with higher levels in the winter, whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest that the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed, with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor-phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air. Implications: PM2.5 and its corresponding vapor phase, containing semivolatile organics, were collected in three communities in the Los Angeles Basin and examined with toxicologically relevant chemical assays. The PM2.5 phase contained most of the prooxidants and the vapor phase contained most of the electrophiles, whose content was highest in summer samples from a receptor site that reflected greater photochemical processing of the air parcel during its transport. As electrophiles initiate both adverse and adaptive responses to foreign substances by biological systems, their presence in the vapor phase emphasizes the importance of this phase in the overall health effects of ambient air. © 2015 A&WMA. Source

Discover hidden collaborations