Southern California Coastal Water Research Project Authority

Costa Mesa, CA, United States

Southern California Coastal Water Research Project Authority

Costa Mesa, CA, United States
Time filter
Source Type

Cao Y.,Southern California Coastal Water Research Project Authority | Sivaganesan M.,U.S. Environmental Protection Agency | Blackwood A.D.,University of North Carolina at Chapel Hill | Noble R.T.,University of North Carolina at Chapel Hill | And 3 more authors.
Water Research | Year: 2013

Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an option for recreational water quality testing in the United States (USEPA, 2011. EPA-OW-2011-0466, FRL-9609-3, Notice of Availability of Draft Recreational Water Quality Criteria and Request for Scientific Views). However, transition of qPCR from a research tool to routine water quality testing requires information on how various method variations affect target enumeration. Here we compared qPCR performance and enumeration of enterococci in spiked and environmental water samples using three qPCR platforms (Applied Biosystem StepOnePlus™, the BioRad iQ™5 and the Cepheid SmartCycler® II), two reference materials (lyophilized cells and frozen cells on filters) and two comparative CT quantification models (ΔCT and ΔΔCT). Reference materials exerted the biggest influence, consistently affecting results by approximately 0.5 log10 unit. Platform had the smallest effect, generally exerting <0.1 log10 unit difference in final results. Quantification model led to small differences (0.04-0.2 log10 unit) in this study with relatively uninhibited samples, but has the potential to cause as much as 8-fold (0.9 log10 unit) difference in potentially inhibitory samples. Our findings indicate the need for a certified and centralized source of reference materials and additional studies to assess applicability of the quantification models in analyses of PCR inhibitory samples. © 2012 Elsevier Ltd.

Cooley S.R.,Outreach | Jewett E.B.,National Oceanic and Atmospheric Administration | Reichert J.,Annapolis flyer cab | Robbins L.,U.S. Geological Survey | And 3 more authors.
Oceanography | Year: 2015

Much of the detailed, incremental knowledge being generated by current scientific research on ocean acidification (OA) does not directly address the needs of decision makers, who are asking broad questions such as: Where will OA harm marine resources next? When will this happen? Who will be affected? And how much will it cost? In this review, we use a series of mainly US-based case studies to explore the needs of local to international-scale groups that are making decisions to address OA concerns. Decisions concerning OA have been made most naturally and easily when information needs were clearly defined and closely aligned with science outputs and initiatives. For decisions requiring more complex information, the process slows dramatically. Decision making about OA is greatly aided (1) when a mixture of specialists participates, including scientists, resource users and managers, and policy and law makers; (2) when goals can be clearly agreed upon at the beginning of the process; (3) when mixed groups of specialists plan and create translational documents explaining the likely outcomes of policy decisions on ecosystems and natural resources; (4) when regional work on OA fits into an existing set of priorities concerning climate or water quality; and (5) when decision making can be reviewed and enhanced. © 2015 by The Oceanography Society. All rights reserved.

Barton A.,Whiskey Creek Shellfish Hatchery | Waldbusser G.G.,Oregon State University | Feely R.A.,National Oceanic and Atmospheric Administration | Weisberg S.B.,Southern California Coastal Water Research Project Authority | And 9 more authors.
Oceanography | Year: 2015

In 2007, the US west coast shellfish industry began to feel the effects of unprecedented levels of larval mortality in commercial hatcheries producing the Pacific oyster Crassostrea gigas. Subsequently, researchers at Whiskey Creek Shellfish Hatchery, working with academic and government scientists, showed a high correlation between aragonite saturation state (Ωarag) of inflowing seawater and survival of larval groups, clearly linking increased CO2 to hatchery failures. This work led the Pacific Coast Shellfish Growers Association (PCSGA) to instrument shellfish hatcheries and coastal waters, establishing a monitoring network in collaboration with university researchers and the US Integrated Ocean Observing System. Analytical developments, such as the ability to monitor Ωarag in real time, have greatly improved the industry’s understanding of carbonate chemistry and its variability and informed the development of commercial-scale water treatment systems. These treatment systems have generally proven effective, resulting in billions of additional oyster larvae supplied to Pacific Northwest oyster growers. However, significant challenges remain, and a multifaceted approach, including selective breeding of oyster stocks, expansion of hatchery capacity, continued monitoring of coastal water chemistry, and improved understanding of biological responses will all be essential to the survival of the US west coast shellfish industry.

Dodder N.G.,Southern California Coastal Water Research Project Authority | Maruya K.A.,Southern California Coastal Water Research Project Authority | Lee Ferguson P.,Duke University | Grace R.,AXYS Analytical Services | And 5 more authors.
Marine Pollution Bulletin | Year: 2014

Contaminants of emerging concern were measured in mussels collected along the California coast in 2009-2010. The seven classes were alkylphenols, pharmaceuticals and personal care products, polybrominated diphenyl ethers (PBDE), other flame retardants, current use pesticides, perfluorinated compounds (PFC), and single walled carbon nanotubes. At least one contaminant was detected at 67 of the 68 stations (98%), and 67 of the 167 analytes had at least one detect (40%). Alkylphenol, PBDE, and PFC concentrations increased with urbanization and proximity to storm water discharge; pesticides had higher concentrations at agricultural stations. These results suggest that certain compounds; for example, alkylphenols, lomefloxacin and PBDE, are appropriate for inclusion in future coastal bivalve monitoring efforts based on maximum concentrations >50. ng/g dry weight and detection frequencies >50%. Other compounds, for example PFC and hexabromocyclododecane (HBCD), may also be suggested for inclusion due to their >25% detection frequency and potential for biomagnification. © 2013 Elsevier Ltd.

PubMed | University of Florida and Southern California Coastal Water Research Project Authority
Type: | Journal: Journal of visualized experiments : JoVE | Year: 2017

In vitro transactivation bioassays have shown promise as water quality monitoring tools, however their adoption and widespread application has been hindered partly due to a lack of standardized methods and availability of robust, user-friendly technology. In this study, commercially available, division-arrested cell lines were employed to quantitatively screen for endocrine activity of chemicals present in water samples of interest to environmental quality professionals. A single, standardized protocol that included comprehensive quality assurance/quality control (QA/QC) checks was developed for Estrogen and Glucocorticoid Receptor activity (ER and GR, respectively) using a cell-based Fluorescence Resonance Energy Transfer (FRET) assay. Samples of treated municipal wastewater effluent and surface water from freshwater systems in California (USA), were extracted using solid phase extraction and analyzed for endocrine activity using the standardized protocol. Background and dose-response for endpoint-specific reference chemicals met QA/QC guidelines deemed necessary for reliable measurement. The bioassay screening response for surface water samples was largely not detectable. In contrast, effluent samples from secondary treatment plants had the highest measurable activity, with estimated bioassay equivalent concentrations (BEQs) up to 392 ng dexamethasone/L for GR and 17 ng 17-estradiol/L for ER. The bioassay response for a tertiary effluent sample was lower than that measured for secondary effluents, indicating a lower residual of endocrine active chemicals after advanced treatment. This protocol showed that in vitro transactivation bioassays that utilize commercially available, division-arrested cell kits, can be adapted to screen for endocrine activity in water.

Cao Y.,Southern California Coastal Water Research Project Authority | Van De Werfhorst L.C.,University of California at Santa Barbara | Dubinsky E.A.,Lawrence Berkeley National Laboratory | Badgley B.D.,University of Minnesota | And 5 more authors.
Water Research | Year: 2013

Molecular microbial community analyses provide information on thousands of microorganisms simultaneously, and integrate biotic and abiotic perturbations caused by fecal contamination entering water bodies. A few studies have explored community methods as emerging approaches for microbial source tracking (MST), however, an evaluation of the current state of this approach is lacking. Here, we utilized three types of community-based methods with 64 blind, single- or dual-source, challenge samples generated from 12 sources, including: humans (feces), sewage, septage, dogs, pigs, deer, horses, cows, chickens, gulls, pigeons, and geese. Each source was a composite from multiple donors from four representative geographical regions in California. Methods evaluated included terminal restriction fragment polymorphism (TRFLP), phylogenetic microarray (PhyloChip), and next generation (Illumina) sequencing. These methods correctly identified dominant (or sole) sources in over 90% of the challenge samples, and exhibited excellent specificity regardless of source, rarely detecting a source that was not present in the challenge sample. Sensitivity, however, varied with source and community analysis method. All three methods distinguished septage from human feces and sewage, and identified deer and horse with 100% sensitivity and 100% specificity. Method performance improved if the composition of blind dual-source reference samples were defined by DNA contribution of each single source within the mixture, instead of by Enterococcus colony forming units. Data analysis approach also influenced method performance, indicating the need to standardize data interpretation. Overall, results of this study indicate that community analysis methods hold great promise as they may be used to identify any source, and they are particularly useful for sources that currently do not have, and may never have, a source-specific single marker gene. © 2013 Elsevier Ltd.

Booth J.A.T.,City of Los Angeles Environmental Monitoring Division | Woodson C.B.,University of Georgia | Sutula M.,Southern California Coastal Water Research Project Authority | Micheli F.,Stanford University | And 6 more authors.
Limnology and Oceanography | Year: 2014

Here we examine a 50+ yr data set from a regionally coordinated southern California water quality monitoring program to assess temporal trends and determine whether nearshore waters are exhibiting changes in dissolved oxygen (DO) content similar to those reported offshore. DO in sub-mixed layer nearshore waters (≤ 10 km from shore) have declined up to four times faster than reported for offshore waters over the last 15 yr. These trends were evident over depth, and along isopycnals. They have no precedent over the past 50 yr and do not appear to be attributable primarily to large-scale climate variability in ocean DO. Coastal biophysical processes, including increased phytoplankton biomass in surface waters, are likely contributing to the recent elevated rate of DO decline in nearshore waters, as evidenced by higher rates of increase in apparent oxygen utilization. It is unclear whether these processes result from upwelling-derived or anthropogenic nutrient inputs. © 2014, by the Association for the Sciences of Limnology and Oceanography, Inc.

Sengupta A.,Southern California Coastal Water Research Project Authority | Lyons J.M.,California Regional Water Quality Control Board | Smith D.J.,California Regional Water Quality Control Board | Drewes J.E.,Colorado School of Mines | And 3 more authors.
Environmental Toxicology and Chemistry | Year: 2014

To inform future monitoring and assessment of chemicals of emerging concern (CECs) in coastal urban watersheds, the occurrence and fate of more than 60 pharmaceuticals and personal care products (PPCPs), commercial/household chemicals, current-use pesticides, and hormones were characterized in 2 effluent-dominated rivers in southern California (USA). Water samples were collected during 2 low-flow events at locations above and below the discharge points of water reclamation plants (WRPs) and analyzed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Approximately 50% of targeted CECs were detectable at stations downstream from WRPs, compared with <31% and <10% at the reference stations above the WRPs. Concentrations of chlorinated phosphate flame retardants were highest among the CECs tested, with mean total aggregate concentrations of tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) of 3400ng/L and 2400ng/L for the 2 rivers. Maximum in-stream concentrations of pyrethroids (bifenthrin and permethrin), diclofenac, and galaxolide exceeded risk-based thresholds established for monitoring of CECs in effluent-dominated receiving waters. In contrast, maximum concentrations of PPCPs commonly detected in treated wastewater (e.g., acetaminophen, N,N,diethyl-meta-toluamide [DEET], and gemfibrozil) were less than 10% of established thresholds. Attenuation of target CECs was not observed downstream of WRP discharge until dilution by seawater occurred in the tidal zone, partly because of the short hydraulic residence times in these highly channelized systems (<3 d). In addition to confirming CECs for future in-stream monitoring, these results suggest that conservative mass transport is an important boundary condition for assessment of the input, fate, and effects of CECs in estuaries at the bottom of these watersheds. © 2013 SETAC.

Cao Y.,Southern California Coastal Water Research Project Authority | Van De Werfhorst L.C.,University of California at Santa Barbara | Scott E.A.,Southern California Coastal Water Research Project Authority | Raith M.R.,Southern California Coastal Water Research Project Authority | And 2 more authors.
Water Research | Year: 2013

Terminal restriction fragment length polymorphism (TRFLP) is an attractive community analysis method for microbial source tracking (MST) because it is accessible, relatively inexpensive, and can discern multiple fecal sources simultaneously. A new Bacteroidales TRFLP (Bac-TRFLP) method was developed and its source identification performance was evaluated by itself, in comparison to, and in combination with an existing universal bacterial TRFLP method in two laboratories. Sixty-four blind samples from 12 fecal sources (sewage, septage, human, dog, horse, cow, deer, pig, chicken, goose, pigeon, and gull) were used for evaluation. Bac- and Univ-TRFLP exhibited similarly high overall correct identification (>88% and >89%, respectively), excellent specificity regardless of fecal sources, variable sensitivity depending on the source, and stable performance across two laboratories. Compared to Univ-TRFLP, Bac-TRFLP had better sensitivity and specificity with horse, cow, and pig fecal sources but was not suited for certain avian sources such asgoose, gull, and pigeon. Combining the general and more targeted TRFLP methods (Univ&Bac-TRFLP) achieved higher overall correct identification (>92%), higher sensitivity and specificity metrics, and higher reproducibility between laboratories. Our results suggest that the Bac-TRFLP and Univ&Bac-TRFLP methods are promising additions to the MST toolbox and warrant further evaluation and utilization in field MST applications. © 2013 Elsevier Ltd.

Maruya K.A.,Southern California Coastal Water Research Project Authority
Integrated environmental assessment and management | Year: 2014

A scientific advisory panel was convened by the State of California to recommend monitoring for chemicals of emerging concern (CECs) in aquatic systems that receive discharge of municipal wastewater treatment plant (WWTP) effluent and stormwater runoff. The panel developed a risk-based screening framework that considered environmental sources and fate of CECs observed in receiving waters across the State. Using existing occurrence and risk threshold data in water, sediment, and biological tissue, the panel applied the framework to identify a priority list of CECs for initial monitoring in three representative receiving water scenarios. The initial screening list of 16 CECs identified by the panel included consumer and commercial chemicals, flame retardants, pesticides, pharmaceuticals and personal care products, and natural hormones. The panel designed an iterative, phased strategy with interpretive guidelines that direct and update management actions commensurate with potential risk identified using the risk-based framework and monitoring data. Because of the ever-changing nature of chemical use, technology, and management practices, the panel offered recommendations to improve CEC monitoring, including development of bioanalytical screening methods whose responses integrate exposure to complex mixtures and that can be linked to higher-order effects; development or refinement of models that predict the input, fate, and effects of future chemicals; and filling of key data gaps on CEC occurrence and toxicity. Finally, the panel stressed the need for adaptive management, allowing for future review of, and if warranted, modifications to the strategy to incorporate the latest science available to the water resources community. © 2013 SETAC.

Loading Southern California Coastal Water Research Project Authority collaborators
Loading Southern California Coastal Water Research Project Authority collaborators