Entity

Time filter

Source Type

Athens, GA, United States

Suarez D.L.,Southeast Poultry Research Laboratory
Avian Diseases | Year: 2012

Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical. Source


Menendez K.R.,University of Maryland University College | Garcia M.,University of Georgia | Spatz S.,Southeast Poultry Research Laboratory | Tablante N.L.,University of Maryland University College
Avian Pathology | Year: 2014

Infectious laryngotracheitis (ILT) is an economically important respiratory disease of poultry that affects the poultry industry worldwide. The disease is caused by gallid herpesvirus I (GaHV-1), a member of the genus Iltovirus, family Herpesviridae, subfamily Alphaherpesvirinae. The current incidence of the disease is heavily influenced by live attenuated vaccines, which have been used extensively since their introduction in the mid-twentieth century. The capability of current live attenuated vaccine viruses to revert to virulence and spread from bird to bird has shaped the molecular epidemiology of ILT. Because of the antigenic homogeneity among GaHV-1 strains, differentiation of strains has been achieved by targeting genomic differences between outbreak-related isolates and vaccine strains. Numerous genes and genomic regions have been utilized in the development of DNA-based diagnostic assays to differentiate outbreak-related isolates from vaccine strains in countries where ILT outbreaks have occurred. More recently, full genome sequences have allowed determination of the origin of some of the outbreak-related isolates circulating in some poultry production countries. Overall, molecular typing data collected worldwide have identified live attenuated vaccine-related isolates as the primary source for outbreaks of the disease. © 2014 © 2014 Houghton Trust Ltd. Source


Toro H.,Auburn University | Suarez D.L.,Southeast Poultry Research Laboratory | Tang D.-C.C.,Vaxin Inc | Van Ginkel F.W.,Auburn University | Breedlove C.,Auburn University
Avian Diseases | Year: 2011

We evaluated protection conferred by mucosal vaccination with replication-competent adenovirus-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene from A/turkey/WI/68 (AdTW68.H5 ck). Commercial, layer-type chicken groups were either singly vaccinated ocularly at 5 days of age, singly vaccinated via spray at 5 days of age, or ocularly primed at 5 days and ocularly boosted at 15 days of age. Only chickens primed and boosted via the ocular route developed AI systemic antibodies with maximum hemagglutination inhibition mean titers of 3.9 log 2 at 32 days of age. In contrast, single vaccination via the ocular or spray routes maintained an antibody status similar to unvaccinated controls. All chickens (16/16) subjected to ocular priming and boosting with AdTW68.H5 ck survived challenge with highly pathogenic AI virus A/chicken/Queretaro/14588-19/95 (H5N2). Single ocular vaccination resulted in 63% (10/16) of birds surviving the challenge followed by a 44% (7/16) survival of single-sprayed vaccinated birds. Birds vaccinated twice via the ocular route also showed significantly lower (P < 0.05) AI virus RNA concentrations in oropharyngeal swabs compared to unvaccinated-challenged controls. © 2011 American Association of Avian Pathologists. Source


Cardenas-Garcia S.,Southeast Poultry Research Laboratory | Cardenas-Garcia S.,University of Georgia | Diel D.G.,South Dakota State University | Susta L.,Southeast Poultry Research Laboratory | And 5 more authors.
Biologicals | Year: 2015

While there is typically 100% survivability in birds challenged with vNDV under experimental conditions, either with vaccines formulated with a strain homologous or heterologous (different genotype) to the challenge virus, vaccine deficiencies are often noted in the field. We have developed an improved and more stringent protocol to experimentally evaluate live NDV vaccines, and showed for the first time under experimental conditions that a statistically significant reduction in mortality can be detected with genotype matched vaccines. Using both vaccine evaluation protocols (traditional and improved), birds were challenged with a vNDV of genotype XIII and the efficacy of live heterologous (genotype II) and homologous (genotype XIII) NDV vaccines was compared. Under traditional vaccination conditions there were no differences in survival upon challenge, but the homologous vaccine induced significantly higher levels of antibodies specific to the challenge virus. With the more stringent challenge system (multiple vaccine doses and early challenge with high titers of vNDV), the birds administered the homologous vaccine had superior humoral responses, reduced clinical signs, and reduced mortality levels than those vaccinated with the heterologous vaccine. These results provide basis for the implementation of more sensitive methods to evaluate vaccine efficacy. © 2014. Source


Silva M.S.E.,Southeast Poultry Research Laboratory | Rissi D.R.,University of Georgia | Swayne D.E.,Southeast Poultry Research Laboratory
Avian Diseases | Year: 2016

Infectious bursal disease virus (IBDV) is an important pathogen of chickens causing negative economic impacts in poultry industries worldwide. IBDV has a variable range of virulence, with very virulent (vvIBDV) strains being responsible for the greatest losses from mortality and decreased performance. Previous vvIBDV studies using conventional broilers reported resistance to lethal effects and decreased performance as compared to specific-pathogen-free (SPF) layers, but the potential contribution of the conventional vs. SPF status to resistance has not been examined. In this study we compared differences in the acute pathologic effects of infection by the California rA strain of vvIBDV for SPF white leghorn egg-laying chickens and SPF white Plymouth Rock broiler chickens over a 7-day experimental period. Based on the clinical signs and mortality observed, as well as on the more-severe pathologic changes in lymphoid tissues and kidneys, white leghorns were shown to be more susceptible to the deleterious effects of vvIBDV infection than were white Plymouth Rocks. This study provides important information on the impact of chicken breed on susceptibility to vvIBDV and the absence of impact from conventional vs. SPF status on the outcome. © 2016 American Association of Avian Pathologists. Source

Discover hidden collaborations