Time filter

Source Type

Siejka A.,Veterans Affairs Medical Center | Siejka A.,South Florida Veterans Affairs Foundation for Research and Education | Siejka A.,University of Miami | Siejka A.,Medical University of Lodz | And 6 more authors.
Hormone and Metabolic Research | Year: 2014

Stromal cells strictly modulate the differentiation of the normal prostate epithelium. In benign prostatic hyperplasia (BPH) tissue, the ratio of stromal to epithelial cells reaches a 5:1 ratio. In this study, we evaluated the effects of crossover conditioned media (CM) of stromal and epithelial prostate cells before and after treatment with LHRH antagonist Cetrorelix. WPMY-1 human prostate stromal cells and BPH-1 human benign prostatic hyperplasia cells were cultured in vitro and the effects of crossover conditioned media (CM) from those cells were studied. We evaluated the effect of Cetrorelix on the expression of PCNA and p53 in those cells. We then studied the effect of Cetrorelix on BPH-1 cells cultured with the CM from WPMY-1 cells, as well as the mechanisms which govern these interactions. CM from WPMY-1 cells strongly stimulated the proliferation of BPH-1 cells in a dose dependent manner, while CM from BPH-1 cells only slightly increased the proliferation of WPMY-1 cells. Cetrorelix inhibited the proliferation of both cell lines and the expression of PCNA, while the expression of p53 was increased. Cetrorelix also inhibited the proliferation of BPH-1 cells stimulated with the CM from WPMY-1 cells. In the crossover experiment, conditioned media from WPMY-1 and BPH-1 cells increased the expression of phosphorylated ERK1/2 and STAT3. Our results support previous observations on the bidirectional stromal-epithelial interactions in prostate gland and shed more light on the mechanistic action of those effects. Our study strongly supports the hypothesis that LHRH antagonists may be beneficial for BPH prevention and treatment.© 2014 Georg Thieme Verlag KG Stuttgart New York. Source

Siejka A.,Veterans Affairs Medical Center Education | Siejka A.,South Florida Veterans Affairs Foundation for Research and Education | Siejka A.,University of Miami | Siejka A.,Medical University of Lodz | And 6 more authors.
Peptides | Year: 2012

Lung cancers which show increased vascularization and high microvessel density are considered highly metastatic and with poor prognosis. Growth hormone releasing hormone (GHRH) antagonists are anticancer agents without adverse events in lung cancer tumor models. In the present study we investigated the in vitro effect of GHRH antagonist, MZ-5-156, on focal adhesion kinase (FAK) activity, on the expression of MMP-2 and MMP-9 metalloproteinases, as well as on vascular endothelial growth factor (VEGF) levels in A549 non-small cell lung (NSCLC) cancer cells and H727 bronchial carcinoid cells. We demonstrate for the first time that GHRH antagonist, MZ-5-156, inhibits FAK signaling in lung cancer cells and decreases the expression of additional factors involved in angiogenesis and invasion. In contrast, GHRH itself counteracted these effects. Our study contributes to the further understanding of the processes which govern the mechanism of action of GHRH and its antagonists in cancers. © 2012 Elsevier Inc. Source

Qin Y.J.,Chinese University of Hong Kong | Chan S.O.,Chinese University of Hong Kong | Chong K.K.L.,Chinese University of Hong Kong | Li B.F.L.,Chinese University of Hong Kong | And 13 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

Disruptions in immunity and occurrence of inflammation cause many eye diseases. The growth hormone-releasing hormone-growth hormone-insulin-like growth factor-1 (GHRH-GH-IGF1) axis exerts regulatory effects on the immune system. Its involvement in ocular inflammation remains to be investigated. Here we studied this signaling in endotoxin-induced uveitis (EIU) generated by LPS. The increase in GHRH receptor (GHRH-R) protein levels was parallel to the increase in mRNA levels of pituitary-specific transcription factor-1, GHRH-R splice variant 1, GHRH, and GH following LPS insult. Elevation of GHRH-R and GH receptor was localized on the epitheliumof the iris and ciliary body, and GHRH-R was confined to the infiltrating macrophages and leukocytes in aqueous humor but not to those in stroma. Treatment with GHRH-R antagonist decreased LPS-stimulated surges of GH and IGF1 in aqueous humor and alleviated inflammation by reducing the infiltration of macrophages and leukocytes and the production of TNF-α, IL-1β, and monocyte chemotactic protein-1. Our results indicate that inflammation in the iris and ciliary body involves the activation of GHRH signaling, which affects the recruitment of immune cells and the production of proinflammatory mediators that contribute to EIU pathogenesis. Moreover, the results suggest that GHRH-R antagonists are potential therapeutic agents for the treatment of acute ocular inflammation. © 2014, National Academy of Sciences. All rights reserved. Source

Discover hidden collaborations