Guangzhou, China

South China Normal University is a comprehensive university in Guangzhou, capital of Guangdong province, in the People's Republic of China. The university is featured distinctively by both teaching and research, consisting of diverse branches of learning such as philosophy, economics, law, education, literature, history, science, technology, and management. There is also an elementary school in this university. Wikipedia.


Time filter

Source Type

Patent
Shenzhen Guohua Optoelectronics Co., South China Normal University and Shenzhen Guohua Optoelectronics Institute | Date: 2014-04-22

A display structure having a high-brightness diffuse reflector, an electrowetting display structure based on the display structure, an in-cell type electrowetting display structure and a manufacturing method thereof are disclosed. The display structure comprises panel glass (1), a display layer (2) and substrate glass (3), wherein a high-brightness diffuse reflection polymer thin film material (4) is arranged under the substrate glass (3); the panel glass (1), the display layer (2), the substrate glass (3) and the diffuse reflection polymer thin film material (4) are stacked in sequence. According to the display structure and manufacturing method thereof of the invention, the required diffuse reflection and contrast ratio approximate to paper can be provided by placing a high-brightness diffuse reflection polymer thin film under a substrate or a display layer of a plate display structure as a diffuse reflection layer or a diffuse reflector.


Patent
Shenzhen Guohua Optoelectronics Co., South China Normal University and Shenzhen Guohua Optoelectronics Institute | Date: 2014-04-22

A display structure having a paper effect. The display structure comprises panel glass (1), a display layer (2) and substrate glass (3), wherein a paper layer (4) is provided under the substrate glass, and the panel glass (1), the display layer (2), the substrate glass (3) and the paper layer (4) are stacked in sequence. Also provided are an electrowetting display structure based on the display structure and a method for manufacturing the display structure having a paper effect. A piece of high-quality paper is placed under a substrate of the existing display structure as a diffuse reflection layer or a diffuse reflector, so as to provide required diffuse reflection and contrast approximate to paper. Compared with vacuum coating, the process is simpler, and avoids the expensive vacuum coating process, thereby greatly reducing manufacturing costs.


Patent
South China Normal University, Shenzhen Guohua Optoelectronics Co. and Shenzhen Guohua Optoelectronics Institute | Date: 2017-01-11

An oil puncture controlled starting system for an EFD apparatus and manufacturing method therefor, wherein the EFD display structure comprises a base arranged below a lower electrode, and the base is provided with a step, such that a first liquid has a first thickness outside the step and a second thickness on the step, which is less than the first thickness, such a thickness difference renders the first liquid on the step to be punctured by a second liquid firstly when a lower voltage is applied between a upper electrode and the lower electrode, and the first liquid is pushed by the second liquid to move from a first area to a second area.


Patent
Shenzhen Guohua Optoelectronics Co., South China Normal University and Shenzhen Guohua Optoelectronics Institute | Date: 2017-03-01

A display structure having a paper effect. The display structure comprises panel glass (1), a display layer (2) and substrate glass (3), wherein a paper layer (4) is provided under the substrate glass, and the panel glass (1), the display layer (2), the substrate glass (3) and the paper layer (4) are stacked in sequence. Also provided are an electrowetting display structure based on the display structure and a method for manufacturing the display structure having a paper effect. A piece of high-quality paper is placed under a substrate of the existing display structure as a diffuse reflection layer or a diffuse reflector, so as to provide required diffuse reflection and contrast approximate to paper. Compared with vacuum coating, the process is simpler, and avoids the expensive vacuum coating process, thereby greatly reducing manufacturing costs.


Patent
Shenzhen Guohua Optoelectronics Co., South China Normal University and Shenzhen Guohua Optoelectronics Institute | Date: 2017-03-01

A display structure having a high-brightness diffuse reflector, and an electrowetting display structure based on the display structure, an in-cell type electrowetting display structure and a manufacturing method thereof. The display structure comprises panel glass (1), a display layer (2) and substrate glass (3), wherein a high-brightness diffuse reflection polymer thin film material (4) is arranged under the substrate glass (3); the panel glass (1), the display layer (2), the substrate glass (3) and the diffuse reflection polymer thin film material (4) are stacked in sequence. According to the display structure and manufacturing method thereof of the invention, the required diffuse reflection and contrast ratio approximate to paper can be provided by placing a high-brightness diffuse reflection polymer thin film under a substrate or a display layer of a plate display structure as a diffuse reflection layer or a diffuse reflector. The process of the invention is simpler compared with vacuum coating process which can be avoided, thereby greatly reducing the manufacturing cost.


Liu L.,South China Normal University
Optics Express | Year: 2015

A densely packed waveguide array (DPWA) structure for mode division multiplexing on a silicon chip is proposed. The DPWA consists of several narrow waveguides with different widths, which are densely packed with gaps of 100nm. The lateral dimension of the DPWA is comparable to the conventional multimode waveguide used for mode division multiplexing on silicon. An efficient and parallel (de)multiplexing structure is proposed. For a three-mode DPWA with a 15μm-long (de)multiplexing structure, insertion losses of -0.05dB and cross-talks of -20dB are achievable for all the modes in a wide wavelength range. The present DPWA favors a compact direct bending. In a 45μm-radius 90° bend, insertion losses of -0.1dB and cross-talks of -20dB are obtained. The proposed DPWA structure also shows a large fabrication tolerance. © 2015 Optical Society of America.


Zhou X.,South China Normal University | Xing D.,South China Normal University
Chemical Society Reviews | Year: 2012

Human telomerase is a ribonucleoprotein complex that functions as a telomere terminal transferase by adding multiple TTAGGG hexamer repeats using its integral RNA as the template. There is a very strong association between telomerase activity and malignancy in nearly all types of cancer, suggesting that telomerase could be used not only as a diagnostic and prognostic marker but also as a therapeutic target for managing cancer. The significant progress in biomedical telomerase research has necessitated the development of new bioanalytical methods for the rapid, sensitive, and reliable detection of telomerase activity in a particular cell or clinical tissue and body fluids. In this review, we highlight some of the latest methods for identifying telomerase activity and inhibition and discuss some of the challenges for designing innovative telomerase assays. We also summarise the current technologies and speculate on future directions for telomerase testing. © 2012 The Royal Society of Chemistry.


Shao Z.-G.,South China Normal University
Applied Physics Letters | Year: 2010

We construct the complex networks of human heartbeat dynamics and investigate their statistical properties, using the visibility algorithm proposed by Lacasa and co-workers [Proc. Natl. Acad. Sci. U.S.A. 105, 4972 (2008)]. Our results show that the associated networks for the time series of heartbeat interval are always scale-free, high clustering, hierarchy, and assortative mixing. In particular, the assortative coefficient of associated networks could distinguish between healthy subjects and patients with congestive heart failure. © 2010 American Institute of Physics.


Zhang C.,South China Normal University | Xing D.,South China Normal University
Chemical Reviews | Year: 2010

Single-molecule DNA amplification and analysis has been studied within the confines of microfluidic reactors. With respect to new applications of single-molecule DNA amplification using microfluidics, the most immediately appealing perhaps lies in the field of sequencing. The existing ultrahigh-throughput sequencing technology can be further improved by use of small-sized monodisperse droplets engineered on chips, and the applications of droplet reactors in single-molecule nucleic acid amplification can be further opened up. It is even possible to envision microfluidic platforms capable of performing the entire process of single-molecule amplification and analysis, such as sample preparation of starting template, single-molecule amplification, sequence-specific or non-sequence-specific detection, and data analysis. Small volume operation and rapid thermal cycling have been the major motivations in the development of single-molecule DNA amplification and analysis using microfluidics.


Zhou F.,South China Normal University
Biomaterials | Year: 2012

An immunologically modified nanotube system was developed using an immunoadjuvant, glycated chitosan (GC), as surfactant of single-walled carbon nanotube (SWNTs). This SWNT-GC system not only retained both optical properties of SWNTs and immunological functions of GC, but also could enter cells due to the carrier properties of SWNTs. Cellular SWNTs induced thermal destruction of tumor cells when irradiated by a near-infrared laser and, at the same time, cellular GC could serve both as damage associated molecular pattern molecules (DAMPs) and pathogen associated molecular pattern molecules (PAMPs) to enhance the tumor immunogenicity and enhance the uptake and presentation of tumor antigens, leading to special antitumor response. Using this system and a 980 nm laser, we treated tumors, both in vitro and in vivo, and investigated the induced thermal and immunological effects. Laser + SWNT-GC afford a remarkable efficacy in suppressing tumor growth in animal cancer models, in many cases resulting in complete tumor regression and long-term survival. Mice successfully treated by Laser + SWNT-GC could establish resistance to tumor rechallenge. This system forms a multifunctional temporal-spatial continuum, which can synergize photothermal and immunological effects. The Laser + SWNT-GC could represent a promising treatment modality to induce systemic antitumor response through a local intervention, while minimizing the adverse side effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

Loading South China Normal University collaborators
Loading South China Normal University collaborators