Seoul, South Korea
Seoul, South Korea

Time filter

Source Type

Jung J.,BK21 Project for Medical Science | Jung J.,Yonsei University | Lee J.-H.,Yonsei University | Lee K.-A.,Yonsei University | And 5 more authors.
Clinical Genetics | Year: 2014

Mutation of SLC26A4 is the most common cause of prelingual hearing loss in East Asia. Patients with SLC26A4 mutations have variable phenotypes ranging from non-syndromic hearing loss to Pendred syndrome. Here, we analyzed the correlation between genotype and various inner ear phenotypes and found a possible underlying mechanism. This study included 111 patients with bi-allelic SLC26A4 mutations who had bilateral enlarged vestibular aqueduct (EVA) and hearing loss. p.H723R (61%), c.919-2A>G (24%), and p.T410M (4%) were the most common mutations in Korean patients with EVAs. Residual hearing in patients with c.919-2A>G or p.T410M mutations was better than that of patients with p.H723R homozygous mutations. Interestingly, quantitative polymerase chain reaction showed normal pendrin transcript (6-17% of normal levels) was produced from patients with c.919-2A>G homozygous mutations. Surface expression ratio of pendrin and residual anion exchange activity were higher in cells transfected with p.T410M in comparison to cells transfected with p.H723R. These results suggest that there is a correlation between degree of residual hearing and the SLC26A4 genotype commonly found in the East Asian population. © 2013 John Wiley & Sons A/S.


Kim Y.,Yonsei University | Kim H.R.,Kyungpook National University | Kim J.,Yonsei University | Shin J.-W.,Soree Ear Clinics | And 4 more authors.
Biochemical and Biophysical Research Communications | Year: 2013

Introduction: Mutations in PDS (or SLC26A4) cause both Pendred syndrome (PS) and DFNB4, two autosomal recessive disorders that share hearing loss as a common feature. PS and DFNB4 are genetically homogeneous disorders caused by bi-allelic SLC26A4 mutations. Here, we report a novel synonymous mutation (c.1803G>A, p.Lys601Lys), that caused aberrant splicing in two Korean family members who were clinically considered to have DFNB4, along with congenital hearing loss and dilated vestibular aqueducts (DVA). Methods: After extracting DNA from whole blood using standard procedures, the 21 exons and flanking introns of SLC26A4 were amplified with PCR. To evaluate the implication of a novel synonymous mutation (c.1803G>A), we used The Berkeley Drosophila Genome Project (BDGP) (http://www.fruitfly.org/) as a splice site prediction program and performed exon trapping analysis. Results: In molecular analysis of the 21 exons of SCL26A4, we detected a known splicing mutation (c.919-2A>G, heterozygote) and a novel variant (c.1803G>A, heterozygote) in the patients (II-1 and II-2). According to in silico analysis, the novel variant (c.1803G>A) affects canonical splice donor nucleotide positioning. To define the transcript level effects of this novel 1803G>A variant, we performed exon trapping and confirmed that exon 16 is completely skipped in this variant type. Conclusion: We report a novel synonymous mutation (c.1803G>A) causing complete exon 16 skipping in the SLC26A4 gene in two Korean family members with hearing loss. This is the first case of a synonymous SNP (c.1803G>A) affecting vestibulocochlear organs through altering splicing accuracy by causing a complete skipping of exon 16. An important issue raised by this study is that synonymous mutations that have been previously ignored in clinical diagnoses must now be considered as potential pathogenic mutations. © 2012 Elsevier Inc.


Ryu N.,Kyungpook National University | Sagong B.,Kyungpook National University | Park H.-J.,Soree Ear Clinics | Kim M.-A.,Kyungpook National University | And 3 more authors.
BMC Medical Genetics | Year: 2016

Background: One of the causes of sensorineural hearing loss (SNHL) is degeneration of the inner hair cells in the organ of Corti in the cochlea. The SLC17A8 (solute carrier family 17, member 8) gene encodes vesicular glutamate transporter 3 (VGLUT3), and among its isoforms (VGLUT1-3), only VGLUT3 is expressed selectively in the inner hair cells (IHCs). VGLUT3 transports the neurotransmitter glutamate into the synaptic vesicles of the IHCs. Mutation of the SLC17A8 gene is reported to be associated with DFNA25 (deafness, autosomal dominant 25), an autosomal dominant non-syndromic hearing loss (ADNSHL) in humans. Methods: In this study, we performed a genetic analysis of 87 unrelated Korean patients with ADNSHL to determine whether the SLC17A8 gene affects hearing ability in the Korean population. Results: We found a novel heterozygous frameshift mutation, 2 non-synonymous variations, and a synonymous variation. The novel frameshift mutation, p.M206Nfs*4, in which methionine is changed to asparagine at amino acid position 206, resulted in a termination codon at amino acid position 209. This alteration is predicted to encode a truncated protein lacking transmembrane domains 5 to 12. This mutation is located in a highly conserved region in VGLUT3 across multiple amino acid alignments in different vertebrate species, but it was not detected in 100 unrelated controls who had normal hearing ability. The results from our study suggest that the p.M206Nfs*4 mutation in the SLC17A8 gene is likely a pathogenic mutation that causes ADNSHL. Conclusion: Our findings can facilitate the prediction of the primary cause of ADNSHL in Korean patients. © 2016 Ryu et al.


Ryu N.,Kyungpook National University | Sagong B.,Kyungpook National University | Park H.-J.,Soree Ear Clinics | Kim M.-A.,Kyungpook National University | And 3 more authors.
BMC Medical Genetics | Year: 2016

Background: One of the causes of sensorineural hearing loss (SNHL) is degeneration of the inner hair cells in the organ of Corti in the cochlea. The SLC17A8 (solute carrier family 17, member 8) gene encodes vesicular glutamate transporter 3 (VGLUT3), and among its isoforms (VGLUT1-3), only VGLUT3 is expressed selectively in the inner hair cells (IHCs). VGLUT3 transports the neurotransmitter glutamate into the synaptic vesicles of the IHCs. Mutation of the SLC17A8 gene is reported to be associated with DFNA25 (deafness, autosomal dominant 25), an autosomal dominant non-syndromic hearing loss (ADNSHL) in humans. Methods: In this study, we performed a genetic analysis of 87 unrelated Korean patients with ADNSHL to determine whether the SLC17A8 gene affects hearing ability in the Korean population. Results: We found a novel heterozygous frameshift mutation, 2 non-synonymous variations, and a synonymous variation. The novel frameshift mutation, p.M206Nfs*4, in which methionine is changed to asparagine at amino acid position 206, resulted in a termination codon at amino acid position 209. This alteration is predicted to encode a truncated protein lacking transmembrane domains 5 to 12. This mutation is located in a highly conserved region in VGLUT3 across multiple amino acid alignments in different vertebrate species, but it was not detected in 100 unrelated controls who had normal hearing ability. The results from our study suggest that the p.M206Nfs*4 mutation in the SLC17A8 gene is likely a pathogenic mutation that causes ADNSHL. Conclusion: Our findings can facilitate the prediction of the primary cause of ADNSHL in Korean patients. © 2016 Ryu et al.


Cho H.-J.,Kyungpook National University | Park H.-J.,Soree Ear Clinics | Trexler M.,Hungarian Academy of Sciences | Venselaar H.,Radboud University Nijmegen | And 8 more authors.
Journal of Molecular Medicine | Year: 2012

Mutations in COCH have been associated with autosomal dominant nonsyndromic hearing loss (DFNA9) and are frequently accompanied by vestibular hypofunction. Here, we report identification of a novel missense mutation, p.F527C, located in the vWFA2 domain in members of a Korean family with late-onset and progressive hearing loss. To assess the molecular characteristics of this cochlin mutant, we constructed both wild-type and mutant cochlin constructs and transfected these into mammalian cell lines. Results of immunocytochemistry analysis demonstrated localization of the cochlin mutant in the endoplasmic reticulum/Golgi complex, whereas western blot analyses of cell lysates revealed that the mutant cochlin tends to form covalent complexes that are retained in the cell. Biochemical analyses of recombinant vWFA2 domain of cochlin carrying the p.F527C mutation revealed that the mutation increases propensity of the protein to form covalent disulfide-bonded dimers and affects the structural stability but not the collagen-affinity of the vWFA2 domain. We suggest that the instability of mutant cochlin is the major driving force for cochlin aggregation in the inner ear in DFNA9 patients carrying the COCH p.F527C mutation. © 2012 Springer-Verlag.


Sagong B.,Kyungpook National University | Park H.-J.,Soree Ear Clinics | Lee K.-Y.,Kyungpook National University | Kim U.-K.,Kyungpook National University
Gene | Year: 2012

Mutations of the TECTA gene, which encodes alpha-tectorin, are associated with both dominant (DFNA8/A12) and recessive (DFNB 21) modes of inherited nonsyndromic sensorineural hearing loss, respectively. Although clinical data and genetic analysis for TECTA gene have been reported from different groups, there is no report that compound heterozygous mutations in the TECTA gene result in nonsyndromic sensorineural hearing loss. Here, we identified a missense mutation (p.C1691F) and a splicing mutation (c.6162. +. 3insT), one in each TECTA allele, in the patient with hearing loss. Also, we demonstrated that the splicing mutation results in the abnormal skipping of an exon, which leads to a truncated protein as determined by exon-trapping analysis. To the best of our knowledge, this is the first report of an in vitro functional study of splice site mutations in the TECTA gene. © 2011 Elsevier B.V.


Park H.-J.,Soree Ear Clinics | Park H.-J.,U.S. National Institutes of Health | Cho H.-J.,Kyungpook National University | Cho H.-J.,U.S. National Institutes of Health | And 6 more authors.
Journal of Human Genetics | Year: 2010

Mutations in the DFNA5 gene are known to cause autosomal dominant non-syndromic hearing loss (ADNSHL). To date, five DFNA5 mutations have been reported, all of which were different in the genomic level. In this study, we ascertained a Korean family with autosomal dominant, progressive and sensorineural hearing loss and performed linkage analysis that revealed linkage to the DFNA5 locus on chromosome 7. Sequence analysis of DFNA5 identified a 3-bp deletion in intron 7 (c.991-15-991-13del) as the cause of hearing loss in this family. As the same mutation had been reported in a large Chinese family segregating DFNA5 hearing loss, we compared their DFNA5 mutation-linked haplotype with that of the Korean family. We found a conserved haplotype, suggesting that the 3-bp deletion is derived from a single origin in these families. Our observation raises the possibility that this mutation may be a common cause of autosomal dominant progressive hearing loss in East Asians. © 2010 The Japan Society of Human Genetics. All rights reserved.


Baek J.-I.,Kyungpook National University | Park H.-J.,Soree Ear Clinics | Park K.,Kyung Hee University | Choi S.-J.,Kyungpook National University | And 6 more authors.
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2011

Hearing loss is a common communication disorder caused by various environmental and genetic factors. Hereditary hearing loss is very heterogeneous, and most of such cases involve sensorineural defects in the auditory pathway. There are currently 57 known autosomal dominant non-syndromic hearing loss (DFNA) loci, and the causative genes have been identified at 22 of these loci. In the present study, we performed a genome-wide linkage analysis in a Korean family segregating autosomal dominant hearing loss. We observed linkage on chromosome 1p34, and at this locus, we detected a novel mutation consisting of an 18 nucleotide deletion in exon 4 of the KCNQ4 gene, which encodes a voltage-gated potassium channel. We carried out a functional in vitro study to analyze the effects of this mutation (c.664_681del) along with two previously described KCNQ4 mutations, p.W276S and p.G285C. Although the c.664_681del mutation is located in the intercellular loop and the two previously described mutations, p.W276S and p.G285C, are located in the pore region, all mutants inhibit normal channel function by a dominant negative effect. Our analysis indicates that the intercellular loop is as significant as the pore region as a potential site of pathogenic effects on KCNQ4 channel function. © 2010 Elsevier B.V.


PubMed | Yonsei University, Kyungpook National University and Soree Ear Clinics
Type: | Journal: BMC medical genetics | Year: 2016

One of the causes of sensorineural hearing loss (SNHL) is degeneration of the inner hair cells in the organ of Corti in the cochlea. The SLC17A8 (solute carrier family 17, member 8) gene encodes vesicular glutamate transporter 3 (VGLUT3), and among its isoforms (VGLUT1-3), only VGLUT3 is expressed selectively in the inner hair cells (IHCs). VGLUT3 transports the neurotransmitter glutamate into the synaptic vesicles of the IHCs. Mutation of the SLC17A8 gene is reported to be associated with DFNA25 (deafness, autosomal dominant 25), an autosomal dominant non-syndromic hearing loss (ADNSHL) in humans.In this study, we performed a genetic analysis of 87 unrelated Korean patients with ADNSHL to determine whether the SLC17A8 gene affects hearing ability in the Korean population.We found a novel heterozygous frameshift mutation, 2 non-synonymous variations, and a synonymous variation. The novel frameshift mutation, p.M206Nfs*4, in which methionine is changed to asparagine at amino acid position 206, resulted in a termination codon at amino acid position 209. This alteration is predicted to encode a truncated protein lacking transmembrane domains 5 to 12. This mutation is located in a highly conserved region in VGLUT3 across multiple amino acid alignments in different vertebrate species, but it was not detected in 100 unrelated controls who had normal hearing ability. The results from our study suggest that the p.M206Nfs*4 mutation in the SLC17A8 gene is likely a pathogenic mutation that causes ADNSHL.Our findings can facilitate the prediction of the primary cause of ADNSHL in Korean patients.


PubMed | Yonsei University, Kyungpook National University and Soree Ear Clinics
Type: Journal Article | Journal: PloS one | Year: 2014

Tight junctions (TJs) are essential components of eukaryotic cells, and serve as paracellular barriers and zippers between adjacent tissues. TJs are critical for normal functioning of the organ of Corti, a part of the inner ear that causes loss of sensorineural hearing when damaged. To investigate the relation between genes involved in TJ function and hereditary loss of sensorineural hearing in the Korean population, we selected the TJP2 and CLDN14 genes as candidates for gene screening of 135 Korean individuals. The TJP2 gene, mutation of which causes autosomal dominant non-syndromic hearing loss (ADNSHL), lies at the DFNA51 locus on chromosome 9. The CLDN14 gene, mutation of which causes autosomal recessive non-syndromic hearing loss (ARNSHL), lies at the DFNB29 locus on chromosome 21. In the present study, we conducted genetic analyses of the TJP2 and CLDN14 genes in 87 unrelated patients with ADNSHL and 48 unrelated patients with either ARNSHL or potentially sporadic hearing loss. We identified two pathogenic variations, c.334G>A (p.A112T) and c.3562A>G (p.T1188A), and ten single nucleotide polymorphisms (SNPs) in the TJP2 gene. We found eight non-pathogenic variations in the CLDN14 gene. These findings indicate that, whereas mutation of the TJP2 gene might cause ADNSHL, CLDN14 is not a major causative gene for ARNSHL in the Korean population studied. Our findings may improve the understanding of the genetic cause of non-syndromic hearing loss in the Korean population.

Loading Soree Ear Clinics collaborators
Loading Soree Ear Clinics collaborators