Soller Environmental LLC

Saint Helena, CA, United States

Soller Environmental LLC

Saint Helena, CA, United States
SEARCH FILTERS
Time filter
Source Type

Schoen M.E.,Soller Environmental Inc. | Ashbolt N.J.,University of Alberta | Jahne M.A.,U.S. Environmental Protection Agency | Garland J.,U.S. Environmental Protection Agency
Microbial Risk Analysis | Year: 2017

This paper presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., locally-collected greywater, roof runoff, and stormwater). A probabilistic Quantitative Microbial Risk Assessment (QMRA) was used to derive the pathogen log10 reduction targets (LRTs) that corresponded with an infection risk of either 10-4 per person per year (ppy) or 10-2 ppy. The QMRA accounted for variation in pathogen concentration and sporadic pathogen occurrence (when data were available) in source waters for reference pathogens in the genera Rotavirus, Mastadenovirus (human adenoviruses), Norovirus, Campylobacter, Salmonella, Giardia and Cryptosporidium. Non-potable uses included indoor use (for toilet flushing and clothes washing) with occasional accidental ingestion of treated non-potable water (or cross-connection with potable water), and unrestricted irrigation for outdoor use. Various exposure scenarios captured the uncertainty from key inputs, i.e., the pathogen concentration in source water; the volume of water ingested; and for the indoor use, the frequency of and the fraction of the population exposed to accidental ingestion. Both potable and non-potable uses required pathogen treatment for the selected waters and the LRT was generally greater for potable use than non-potable indoor use and unrestricted irrigation. The difference in treatment requirements among source waters was driven by the microbial quality of the water - both the density and occurrence of reference pathogens. Greywater from collection systems with 1000 people had the highest LRTs; however, those for greywater collected from a smaller population (∼ 5 people), which have less frequent pathogen occurrences, were lower. Stormwater had highly variable microbial quality, which resulted in a range of possible treatment requirements. The microbial quality of roof runoff, and thus the resulting LRTs, remains uncertain due to lack of relevant pathogen data. © 2017 Elsevier B.V.


Whelan G.,U.S. Environmental Protection Agency | Kim K.,U.S. Environmental Protection Agency | Kim K.,Oak Ridge Institute for Science and Education | Pelton M.A.,Pacific Northwest National Laboratory | And 5 more authors.
Environmental Modelling and Software | Year: 2014

Standardized methods are often used to assess the likelihood of a human-health effect from exposure to a specified hazard, and inform opinions and decisions about risk management and communication. A Quantitative Microbial Risk Assessment (QMRA) is specifically adapted to detail potential human-health risks from exposure to pathogens; it can include fate and transport models for various media, including the source zone (initial fecal release), air, soil/land surface, surface water, vadose zone and aquifer. The analysis step of a QMRA can be expressed as a system of computer-based data delivery and modeling that integrates interdisciplinary, multiple media, exposure and effects models and databases. Although QMRA does not preclude using source-term and fate and transport models, it is applied most commonly where the source-term is represented by the receptor location (i.e., exposure point), so the full extent of exposure scenarios has not been rigorously modeled. An integrated environmental modeling infrastructure is, therefore, ideally suited to include fate and transport considerations and link the risk assessment paradigm between source and receptor seamlessly. A primary benefit of the source-to-outcome approach is that it allows an expanded view of relevant cause-and-effect relationships, which facilitate consideration of management options related to source terms and their fate and transport pathways. The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) provides software technology for analysts to insert appropriate models and databases that fit the problem statement and design and construct QMRAs that are reproducible, flexible, transferable, reusable, and transparent. A sample application using different models and databases registered with FRAMES is presented. It illustrates how models are linked to assess six different manure-based contaminant sources, following three pathogens (Salmonella eterica, Cryptosporidium spp., and E scherichia coli O157:H7) to a receptor where exposures and health risk impacts are then evaluated. The modeling infrastructure demonstrates how analysts could use the system to discern which pathogens might be important and when, and which sources could contribute to their importance. © 2014.


Soller J.A.,Soller Environmental LLC | Bartrand T.,Clancy Environmental Consultants | Ashbolt N.J.,U.S. Environmental Protection Agency | Ravenscroft J.,U.S. Environmental Protection Agency | Wade T.J.,U.S. Environmental Protection Agency
Water Research | Year: 2010

Epidemiology studies of recreational waters have demonstrated that swimmers exposed to faecally-contaminated recreational waters are at risk of excess gastrointestinal illness. Epidemiology studies provide valuable information on the nature and extent of health effects, the magnitude of risks, and how these risks are modified or associated with levels of faecal contamination and other measures of pollution. However, such studies have not provided information about the specific microbial agents that are responsible for the observed illnesses in swimmers. The objective of this work was to understand more fully the reported epidemiologic results from studies conducted on the Great Lakes in the US during 2003 and 2004 by identifying pathogens that could have caused the observed illnesses in those studies. We used a Quantitative Microbial Risk Assessment (QMRA) approach to estimate the likelihood of pathogen-induced adverse health effects. The reference pathogens used for this analysis were Norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, Salmonella enterica, and Escherichia coli O157:H7. Two QMRA-based approaches were used to estimate the pathogen combinations that would be consistent with observed illness rates: in the first, swimming-associated gastrointestinal (GI) illnesses were assumed to occur in the same proportion as known illnesses in the US due to all non-foodborne sources, and in the second, pathogens were assumed to occur in the recreational waters in the same proportion as they occur in disinfected secondary effluent. The results indicate that human enteric viruses and in particular, Norovirus could have caused the vast majority of the observed swimming-associated GI illnesses during the 2003/2004 water epidemiology studies. Evaluation of the time-to-onset of illness strongly supports the principal finding and sensitivity analyses support the overall trends of the analyses even given their substantial uncertainties. © 2010 Elsevier Ltd.


Soller J.A.,Soller Environmental LLC | Schoen M.E.,U.S. Environmental Protection Agency | Bartrand T.,Clancy Environmental Consultants | Ravenscroft J.E.,U.S. Environmental Protection Agency | Ashbolt N.J.,U.S. Environmental Protection Agency
Water Research | Year: 2010

This work was conducted to determine whether estimated risks following exposure to recreational waters impacted by gull, chicken, pig, or cattle faecal contamination are substantially different than those associated with waters impacted by human sources such as treated wastewater. Previously published Quantitative Microbial Risk Assessment (QMRA) methods were employed and extended to meet these objectives. Health outcomes used in the analyses were infection from reference waterborne pathogens via ingestion during recreation and subsequent gastrointestinal (GI) illness. Illness risks from these pathogens were calculated for exposure to faecally contaminated recreational water at the U.S. regulatory limits of 35 cfu 100 mL-1 enterococci and 126 cfu 100 mL-1 Escherichia coli. The probabilities of GI illness were calculated using pathogen dose-response relationships from the literature and Monte Carlo simulations. Three scenarios were simulated, representing a range of feasible interpretations of the available data. The primary findings are that: 1) GI illness risks associated with exposure to recreational waters impacted by fresh cattle faeces may not be substantially different from waters impacted by human sources; and 2) the risks associated with exposure to recreational waters impacted by fresh gull, chicken, or pig faeces appear substantially lower than waters impacted by human sources. These results suggest that careful consideration may be needed in the future for the management of recreational waters not impacted by human sources. © 2010 Elsevier Ltd.


PubMed | University of Texas at Austin, Eastern Research Group, Albany State University, University of Alberta and 2 more.
Type: | Journal: Water research | Year: 2016

We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options.


Ashbolt N.J.,U.S. Environmental Protection Agency | Ashbolt N.J.,University of New South Wales | Schoen M.E.,U.S. Environmental Protection Agency | Soller J.A.,Soller Environmental LLC | Roser D.J.,University of New South Wales
Water Research | Year: 2010

There has been an ongoing dilemma for agencies that set criteria for safe recreational waters in how to provide for a seasonal assessment of a beach site versus guidance for day-to-day management. Typically an overall 'safe' criterion level is derived from epidemiologic studies of sewage-impacted beaches. The decision criterion is based on a percentile value for a single sample or a moving median of a limited number (e.g. five per month) of routine samples, which are reported at least the day after recreator exposure has occurred. The focus of this paper is how to better undertake day-to-day recreational site monitoring and management. Internationally, good examples exist where predictive empirical regression models (based on rainfall, wind speed/direction, etc.) may provide an estimate of the target faecal indicator density for the day of exposure. However, at recreational swimming sites largely impacted by non-sewage sources of faecal indicators, there is concern that the indicator-illness associations derived from studies at sewage-impacted beaches may be inappropriate. Furthermore, some recent epidemiologic evidence supports the relationship to gastrointestinal (GI) illness with qPCR-derived measures of Bacteroidales/Bacteroides spp. as well as more traditional faecal indicators, but we understand less about the environmental fate of these molecular targets and their relationship to bather risk. Modelling pathogens and indicators within a quantitative microbial risk assessment framework is suggested as a way to explore the large diversity of scenarios for faecal contamination and hydrologic events, such as from waterfowl, agricultural animals, resuspended sediments and from the bathers themselves. Examples are provided that suggest that more site-specific targets derived by QMRA could provide insight, directly translatable to management actions. © 2010.


PubMed | Soller Environmental Inc. and University of Washington
Type: | Journal: Risk analysis : an official publication of the Society for Risk Analysis | Year: 2016

The application of quantitative microbial risk assessments (QMRAs) to understand and mitigate risks associated with norovirus is increasingly common as there is a high frequency of outbreaks worldwide. A key component of QMRA is the dose-response analysis, which is the mathematical characterization of the association between dose and outcome. For Norovirus, multiple dose-response models are available that assume either a disaggregated or an aggregated intake dose. This work reviewed the dose-response models currently used in QMRA, and compared predicted risks from waterborne exposures (recreational and drinking) using all available dose-response models. The results found that the majority of published QMRAs of norovirus use the


Schoen M.E.,U.S. Environmental Protection Agency | Soller J.A.,Soller Environmental LLC | Ashbolt N.J.,U.S. Environmental Protection Agency
Water Research | Year: 2011

Quantitative microbial risk assessment (QMRA) was used to evaluate the relative contribution of faecal indicators and pathogens when a mixture of human sources impacts a recreational waterbody. The waterbody was assumed to be impacted with a mixture of secondary-treated disinfected municipal wastewater and untreated (or poorly treated) sewage, using Norovirus as the reference pathogen and enterococci as the reference faecal indicator. The contribution made by each source to the total waterbody volume, indicator density, pathogen density, and illness risk was estimated for a number of scenarios that accounted for pathogen and indicator inactivation based on the age of the effluent (source-to-receptor), possible sedimentation of microorganisms, and the addition of a non-pathogenic source of faecal indicators (such as old sediments or an animal population with low occurrence of human-infectious pathogens). The waterbody indicator density was held constant at 35 CFU 100 mL-1 enterococci to compare results across scenarios. For the combinations evaluated, either the untreated sewage or the non-pathogenic source of faecal indicators dominated the recreational waterbody enterococci density assuming a culture method. In contrast, indicator density assayed by qPCR, pathogen density, and bather gastrointestinal illness risks were largely dominated by secondary disinfected municipal wastewater, with untreated sewage being increasingly less important as the faecal indicator load increased from a non-pathogenic source. The results support the use of a calibrated qPCR total enterococci indicator, compared to a culture-based assay, to index infectious human enteric viruses released in treated human wastewater, and illustrate that the source contributing the majority of risk in a mixture may be overlooked when only assessing faecal indicators by a culture-based method. © 2011.


Soller J.A.,Soller Environmental LLC | Schoen M.E.,Soller Environmental LLC | Varghese A.,ICF International | Ichida A.M.,ICF International | And 5 more authors.
Water Research | Year: 2014

We simulate the influence of multiple sources of enterococci (ENT) as faecal indicator bacteria (FIB) in recreational water bodies on potential human health risk by considering waters impacted by human and animal sources, human and non-pathogenic sources, and animal and non-pathogenic sources. We illustrate that risks vary with the proportion of culturable ENT in water bodies derived from these sources and estimate corresponding ENT densities that yield the same level of health protection that the recreational water quality criteria in the United States seeks (benchmark risk). The benchmark risk is based on epidemiological studies conducted in water bodies predominantly impacted by human faecal sources. The key result is that the risks from mixed sources are driven predominantly by the proportion of the contamination source with the greatest ability to cause human infection (potency), not necessarily the greatest source(s) of FIB. Predicted risks from exposures to mixtures comprised of approximately 30% ENT from human sources were up to 50% lower than the risks expected from purely human sources when contamination is recent and ENT levels are at the current water quality criteria levels (35CFU 100mL-1). For human/non-pathogenic, human/gull, human/pig, and human/chicken faecal mixtures with relatively low human contribution, the predicted culturable enterococci densities that correspond to the benchmark risk are substantially greater than the current water quality criteria values. These findings are important because they highlight the potential applicability of site specific water quality criteria for waters that are predominantly un-impacted by human sources. © 2014 Elsevier Ltd.


Schoen M.E.,Soller Environmental Inc. | Xue X.,U.S. Environmental Protection Agency | Hawkins T.R.,U.S. Environmental Protection Agency | Ashbolt N.J.,University of Alberta
Environmental Science and Technology | Year: 2014

As a pilot approach to describe adverse human health effects from alternative decentralized community water systems compared to conventional centralized services (business-as-usual [BAU]), selected chemical and microbial hazards were assessed using disability adjusted life years (DALYs) as the common metric. The alternatives included: (1) composting toilets with septic system, (2) urine-diverting toilets with septic system, (3) low flush toilets with blackwater pressure sewer and on-site greywater collection and treatment for nonpotable reuse, and (4) alternative 3 with on-site rainwater treatment and use. Various pathogens (viral, bacterial, and protozoan) and chemicals (disinfection byproducts [DBPs]) were used as reference hazards. The exposure pathways for BAU included accidental ingestion of contaminated recreational water, ingestion of cross-connected sewage to drinking water, and shower exposures to DBPs. The alternative systems included ingestion of treated greywater from garden irrigation, toilet flushing, and crop consumption; and ingestion of treated rainwater while showering. The pathways with the highest health impact included the ingestion of cross-connected drinking water and ingestion of recreational water contaminated by septic seepage. These were also among the most uncertain when characterizing input parameters, particularly the scale of the cross-connection event, and the removal of pathogens during groundwater transport of septic seepage. A comparison of the health burdens indicated potential health benefits by switching from BAU to decentralized water and wastewater systems. © 2014 American Chemical Society.

Loading Soller Environmental LLC collaborators
Loading Soller Environmental LLC collaborators