Piscataway, NJ, United States
Piscataway, NJ, United States

Time filter

Source Type

Patent
Solidia Technologies | Date: 2016-10-11

The invention encompasses methods to control the curing of a CO_(2 )Composite Material (CCM) and processes that use such equipment to cure the CCM. The method provides a way to compute the expected water distribution in an uncured porous concrete product based on a set of environmental conditions on.


The invention provides a novel, steam-assisted production methodology and associated compositions and methods of use in the manufacture of carbonatable or non-carbonatable metal silicate or metal silicate hydrate (e.g., calcium silicate or calcium silicate hydrate) compositions. These metal silicate compositions and related phases are suitable for use hydraulic, partially hydraulic or non-hydraulic cement that sets and hardens by a hydration process, a carbonation process or a combination thereof, and may be applied in a variety of concrete components in the infrastructure, construction, pavement and landscaping industries.


Patent
Solidia Technologies | Date: 2017-06-14

The invention provides novel carbonatable calcium silicate compositions and carbonatable calcium silicate phases that are made from widely available, low cost raw materials by a process suitable for large-scale production. The method of the invention is flexible in equipment and production requirements and is readily adaptable to manufacturing facilities of conventional cement. The invention offers an exceptional capability to permanently and safely sequesters CO2.


The invention encompasses equipment used to condition a recirculating gas stream in order to cure a CO2 Composite Material (CCM) and processes that use such equipment to cure the CCM. The gas conditioning equipment allows for a process that controls, reduces or eliminates the rate-limiting steps associated with water removal during the curing of a composite material. The equipment may include, but will not be limited to, control over the temperature, relative humidity, flow rate, pressure, and carbon dioxide concentration within the system; which includes the conditioning equipment, any vessel containing the CCM, and the material itself. Flow rate control can be used as a means to achieve uniformity in both gas velocity and composition.


Patent
Solidia Technologies | Date: 2017-01-18

A cementitious composition comprising a crystalline phase and an amorphous phase, and an activator selected from the group of materials comprising inorganic bases. In some cases the crystalline phase is gehlenite. In some cases the crystalline phase is anorthite. In some cases the amorphous phase is amorphous calcium aluminum silicate. In some cases the activator is elected from OPC (1-70 wt %), free lime (1-20 wt %), calcium hydroxide (1-20 wt %), and alkali hydroxides (NaOH, KOH 1 to 10 wt %), individually or in combination. A low lime cementitious material is cured by reaction with a curing reagent that includes a reagent chemical that is synthesized from CO_(2). Examples of such a reagent are oxalic acid and tartaric acid.


The invention provides compositions and methods for controlling setting of carbonatable calcium silicate compositions that are contaminated with hydrating materials. These carbonatable calcium silicate cements are suitable for use as non-hydraulic cement that hardens by a carbonation process and may be applied in a variety of concrete components in the infrastructure, construction, pavement and landscaping industries.


Patent
Solidia Technologies and Lafarge | Date: 2016-03-18

The invention provides novel, microstructured clinker and cement materials that are characterized by superior grindability and reactivity. The disclosed clinker and cement materials are based on carbonatable calcium silicate and can be made from widely available, low cost raw materials via a process suitable for large-scale production. The method of the invention is flexible in equipment and processing requirements and is readily adaptable to manufacturing facilities of conventional Portland cement.


The invention provides composite materials comprising novel bonding elements exhibiting unique microstructures and chemical compositions, and methods for their manufacture and uses, for example, in a variety of concrete components with or without aggregates in the infrastructure, construction, pavement and landscaping industries.


Patent
Solidia Technologies | Date: 2016-02-21

The invention provides novel marble-like composite materials and methods for preparation thereof. The marble-like composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production. The precursor materials include calcium silicate and calcium carbonate rich materials, for example, wollastonite and limestone. Various additives can be used to fine-tune the physical appearance and mechanical properties of the composite material, such as pigments (e.g., black iron oxide, cobalt oxide and chromium oxide) and minerals (e.g., quartz, mica and feldspar). These marble-like composite materials exhibit veins, swirls and/or waves unique to marble as well as display compressive strength, flexural strength and water absorption similar to that of marble.


Patent
Solidia Technologies | Date: 2016-02-21

The invention provides novel slate-like composite materials and methods for preparation thereof. The slate-like composite materials can be readily produced from widely available, low cost precursor materials by a process suitable for large-scale production. The precursor materials include calcium silicate, for example, wollastonite, and particulate filler materials which comprise silicon dioxide-rich materials such as quartz, mica, feldspar, sand and glass. Additives can include calcium carbonate-rich and magnesium carbonate-rich materials. Various additives can be used to fine-tune the physical appearance and mechanical properties of the composite material, such as colorants such as particles of colored materials, such as colored glass, colored sand, and colored quartz particles, and pigments (e.g., black iron oxide, cobalt oxide and chromium oxide). These slate-like composite materials exhibit visual patterns unique to slate as well as display compressive strength, flexural strength and water absorption similar to that of slate.

Loading Solidia Technologies collaborators
Loading Solidia Technologies collaborators