Fremont, CA, United States
Fremont, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Solaria Corp | Date: 2015-09-29

In an example, a solar module apparatus is provided. The module has an equivalent diode device configured between the first end termination and the second end termination such that one of the plurality of photovoltaic strips associated with one of the plurality of strings when shaded causes the plurality of strips (Shaded Strips) associated with the one of the strings to cease generating electrical current from application of electromagnetic radiation, while a remaining plurality of strips, associated with the remaining plurality of strings, each of which generates a current that is substantially equivalent as an electrical current while the Shaded Strips are not shaded.


Patent
Solaria Corp | Date: 2015-01-29

In an example, a solar module apparatus is provided. The module has an equivalent diode device configured between the first end termination and the second end termination such that one of the plurality of photovoltaic strips associated with one of the plurality of strings when shaded causes the plurality of strips (Shaded Strips) associated with the one of the strings to cease generating electrical current from application of electromagnetic radiation, while a remaining plurality of strips, associated with the remaining plurality of strings, each of which generates a current that is substantially equivalent as an electrical current while the Shaded Strips are not shaded.


Patent
Solaria Corp | Date: 2012-07-30

A solar module includes a substrate member, a plurality of photovoltaic strips arranged in an array configuration overlying the substrate member, and a concentrator structure comprising extruded glass material operably coupled to the plurality of photovoltaic strips. A plurality of elongated convex regions are configured within the concentrator structure. The plurality of elongated convex regions are respectively coupled to the plurality of photovoltaic strips. Each of the plurality of elongated convex regions includes a length and a convex surface region characterized by a radius of curvature, each of the elongated convex regions being configured to have a magnification ranging from about 1.5 to about 5. A coating material rendering the glass self-cleaning overlies the plurality of elongated convex regions.


A glass concentrator for manufacture of solar energy conversion module is provided including a webbing that has a load sustenance characteristic and a hail impact resistance characteristic based on a first thickness of the webbing. The concentrator also includes a plurality of elongated concentrating elements integrally formed with the webbing. Each of the elongated concentrating elements has an aperture region, an exit region and two side regions, which bears a geometric concentration characteristic provided by a highly reflective side regions and an aperture-to-exit. scale ratio in a range from about 1.8 to about 4.5. The glass concentrator can be attached with a plurality of photovoltaic strips cumulatively on each and every exit regions and clamped with a rigid or flexible back cover member to form a solar concentrator module for converting sunlight to electric energy. The solar concentrator module based on certain embodiments meets the industrial qualification standards.


Patent
Solaria Corp | Date: 2013-01-17

A solar module includes a substrate member, a plurality of photovoltaic strips arranged in an array configuration overlying the substrate member, and a concentrator structure comprising extruded glass material operably coupled to the plurality of photovoltaic strips. A plurality of elongated convex regions are configured within the concentrator structure. The plurality of elongated convex regions are respectively coupled to the plurality of photovoltaic strips. Each of the plurality of elongated convex regions includes a length and a convex surface region characterized by a radius of curvature, each of the elongated convex regions being configured to have a magnification ranging from about 1.5 to about 5. A coating material rendering the glass self-cleaning overlies the plurality of elongated convex regions.


Patent
Solaria Corp | Date: 2014-07-01

A method for forming a laminated photovoltaic structure includes providing a sheet of transparent material having light concentrating features, disposing adhesive material adjacent to the sheet of transparent material, disposing photovoltaic strips adjacent to the adhesive material, wherein the photovoltaic strips are positioned relative to the sheet of transparent material in response to exitant light characteristics of the light concentrating features, wherein photovoltaic strips are coupled via associated bus bars, wherein gap regions are located between bus bars of neighboring photovoltaic strips, disposing a rigid layer of material adjacent to the photovoltaic strips to form a composite photovoltaic structure; and thereafter laminating the composite photovoltaic structure to fill the gap regions with adhesive material and to form the laminated photovoltaic structure, wherein adhesive material adheres to the bus bars.


The invention provides a solar concentrator structure including a first concentrating element. The first concentrating element includes a first aperture region, a first exit region, a first side and a second side. The solar concentrator structure further includes a second or more concentrating elements integrally coupled with the first concentrating element in a parallel manner. The second concentrating element includes a second aperture region, a second exit region, the third side, and a fourth side. The third side joins with the second side to form an apex notch structure characterized by a radius of curvature. Additionally, the solar concentrator structure includes a separation region by a width separating the first exit region from the second exit region and a triangular region including the apex notch structure and a base defined by the separation region and a refractive index of about 1 characterizing the triangular region.


Patent
Solaria Corp | Date: 2016-02-19

A solar module system includes a first transparent substrate member, a second transparent substrate member, and a plurality of photovoltaic members configured in a spatial manner sandwiched between the first substrate member and the second substrate member to allow at least a first portion of light to be transmitted and a second portion of light to be blocked. The system also has one or more inverter devices coupled to the solar module and configured to convert direct current to alternating current. The system may have an electrical cord comprising a first end and a second end, the first end being coupled to the one or more inverter devices and the second end comprising at least a pair of electrodes. The system can be used for indoor use or other application.


Patent
Solaria Corp | Date: 2013-12-09

In an example, the present invention provides a solar tracker apparatus. In an example, the apparatus comprises a center of mass with an adjustable hanger assembly configured with a clam shell clamp assembly on the adjustable hanger assembly and a cylindrical torque tube comprising a plurality of torque tubes configured together in a continuous length from a first end to a second end such that the center of mass is aligned with a center of rotation of the cylindrical torque tubes to reduce a load of a drive motor operably coupled to the cylindrical torque tube. Further details of the present example, among others, can be found throughout the present specification and more particularly below.


A solar cell device has a back cover member, which includes a surface area and a back area, and a plurality of photovoltaic regions disposed overlying the surface area of the back cover member. The plurality of photovoltaic regions may occupy a total photovoltaic spatial region. The device has an encapsulating material overlying a portion of the back cover member and a front cover member coupled to the encapsulating material. An interface region is provided along at least a peripheral region of the back cover member and the front cover member. A sealed region is formed on at least the interface region to form an individual solar cell from the back cover member and the front cover member. The total photovoltaic spatial region/the surface area of the back cover may be at a ratio of about 0.80 and less for the individual solar cell.

Loading Solaria Corp collaborators
Loading Solaria Corp collaborators