Entity

Time filter

Source Type

Fremont, CA, United States

A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.10 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.10 mm and less characterizing a region between the first concentrator element and the second concentrator element.


A method for forming a solar energy collection device includes receiving a sheet of glass comprising glass material, wherein the sheet of glass includes a plurality of light concentrating geometric features, measuring geometric characteristics for the plurality of light concentrating geometric features, mathematically calculating predicted light concentration characteristics for each of the plurality of light concentrating geometric features in response to the geometric characteristics, determining placement locations for a plurality of PV strips in response to the predicted light concentration characteristics for each of the plurality of light concentrating geometric features, and securing the plurality of PV strips relative to the sheet of glass in response to the placement locations for the plurality of PV strips.


Patent
Solaria Corp | Date: 2013-12-09

In an example, the present invention provides a solar tracker apparatus. In an example, the apparatus comprises a center of mass with an adjustable hanger assembly configured with a clam shell clamp assembly on the adjustable hanger assembly and a cylindrical torque tube comprising a plurality of torque tubes configured together in a continuous length from a first end to a second end such that the center of mass is aligned with a center of rotation of the cylindrical torque tubes to reduce a load of a drive motor operably coupled to the cylindrical torque tube. Further details of the present example, among others, can be found throughout the present specification and more particularly below.


Patent
Solaria Corp | Date: 2014-07-01

A method for forming a laminated photovoltaic structure includes providing a sheet of transparent material having light concentrating features, disposing adhesive material adjacent to the sheet of transparent material, disposing photovoltaic strips adjacent to the adhesive material, wherein the photovoltaic strips are positioned relative to the sheet of transparent material in response to exitant light characteristics of the light concentrating features, wherein photovoltaic strips are coupled via associated bus bars, wherein gap regions are located between bus bars of neighboring photovoltaic strips, disposing a rigid layer of material adjacent to the photovoltaic strips to form a composite photovoltaic structure; and thereafter laminating the composite photovoltaic structure to fill the gap regions with adhesive material and to form the laminated photovoltaic structure, wherein adhesive material adheres to the bus bars.


A solar cell device has a back cover member, which includes a surface area and a back area, and a plurality of photovoltaic regions disposed overlying the surface area of the back cover member. The plurality of photovoltaic regions may occupy a total photovoltaic spatial region. The device has an encapsulating material overlying a portion of the back cover member and a front cover member coupled to the encapsulating material. An interface region is provided along at least a peripheral region of the back cover member and the front cover member. A sealed region is formed on at least the interface region to form an individual solar cell from the back cover member and the front cover member. The total photovoltaic spatial region/the surface area of the back cover may be at a ratio of about 0.80 and less for the individual solar cell.

Discover hidden collaborations