Time filter

Source Type

Halldorsson G.,Soil Conservation Service of Iceland | Sigurdsson B.D.,Agricultural University of Iceland | Hrafnkelsdottir B.,Agricultural University of Iceland | Hrafnkelsdottir B.,Icelandic Forest Research | And 3 more authors.
Icelandic Agricultural Sciences | Year: 2013

This paper is a review of the history of the introduction of arthropod herbivore species to Iceland since the beginning of the 20th century. A total of 27 new arthropod herbivore species on trees and shrubs have become established in Iceland during this period. One of the introduced pest species, the pine woolly aphid, has been considered to be the major cause of the almost total eradication of the introduced Scots pine in Iceland. The rate of introduction was found to be highest during warm periods. Outbreaks of pests in birch woodlands were also found to be most severe during warm periods. Other pest species have shown changes in outbreak patterns since 1990. The consequences of these findings for isolated native forest ecosystems and a growing forest resource in Iceland are discussed.


Nilsson C.,Umeå University | Aradottir A.L.,Agricultural University of Iceland | Hagen D.,Norwegian Institute for Nature Research | Halldorsson G.,Soil Conservation Service of Iceland | And 6 more authors.
Ecology and Society | Year: 2016

We developed a conceptual framework for evaluating the process of ecological restoration and applied it to 10 examples of restoration projects in the northern hemisphere. We identified three major phases, planning, implementation, and monitoring, in the restoration process. We found that evaluation occurred both within and between the three phases, that it included both formal and informal components, and that it often had an impact on the performance of the projects. Most evaluations were short-term and only some parts of them were properly documented. Poor or short-term evaluation of the restoration process creates a risk that inefficient methods will continue to be used, which reduces the efficiency and effectiveness of restoration. To improve the restoration process and to transfer the knowledge to future projects, we argue for more formal, sustained evaluation procedures, involving all relevant stakeholders, and increased and improved documentation and dissemination of the results. © 2016 by the author(s).


Tanner L.H.,Le Moyne College | Nivison M.,Le Moyne College | Arnalds O.,Agricultural University of Iceland | Svavarsdottir K.,Soil Conservation Service of Iceland
Applied and Environmental Soil Science | Year: 2015

Experimental plots were established on severely eroded land surfaces in Iceland in 1999 to study the rates and limits of soil carbon sequestration during restoration and succession. The carbon content in the upper 10 cm of soils increased substantially during the initial eight years in all plots for which the treatments included both fertilizer and seeding with grasses, concomitant with the increase in vegetative cover. In the following five years, however, the soil carbon accumulation rates declined to negligible for most treatments and the carbon content in soils mainly remained relatively constant. We suggest that burial of vegetated surfaces by aeolian drift and nutrient limitation inhibited productivity and carbon sequestration in most plots. Only plots seeded with lupine demonstrated continued long-term soil carbon accumulation and soil CO2 flux rates significantly higher than background levels. This demonstrates that lupine was the sole treatment that resulted in vegetation capable of sustained growth independent of nutrient availability and resistant to disruption by aeolian processes. © 2015 Lawrence H. Tanner et al.


Aradottir A.L.,Agricultural University of Iceland | Petursdottir T.,Soil Conservation Service of Iceland | Petursdottir T.,European Commission | Halldorsson G.,Soil Conservation Service of Iceland | And 2 more authors.
Ecology and Society | Year: 2013

We analyzed the main drivers for ecological restoration in Iceland from 1907 to 2010 and assessed whether the drivers have changed over time and what factors might explain the changes, if any. Our study was based on a catalogue of 100 restoration projects, programs, and areas, representing 75% to 85% of all restoration activities in Iceland. Catastrophic erosion was an early driver for soil conservation and restoration efforts that still ranked high in the 2000s, reflecting the immense scale of soil erosion and desertification in Iceland. Socioeconomic drivers such as farming and the provision of wood products were strong motivators of ecological restoration over most of the 20th century, although their relative importance decreased with time as the number and diversity of drivers increased. In the 1960s and 1970s, the construction of hard infrastructure, and moral values such as improving the aesthetics of the countryside and "repaying the debt to the land" emerged as motivations for restoration actions. In the late 1990s, the United Nations Climate Change Convention became a driver for restoration, and the importance of nature conservation and recreation increased. Technological development and financial incentives did not show up as drivers of ecological restoration in our study, although there are some indications of their influence. Furthermore, policy was a minor driver, which might reflect weak policy instruments for ecological restoration and some counteractive policies. © 2013 by the author(s).


Hagen D.,Norwegian Institute for Nature Research | Svavarsdottir K.,Soil Conservation Service of Iceland | Nilsson C.,Umeå University | Tolvanen A.K.,Finnish Forest Research Institute | And 5 more authors.
Ecology and Society | Year: 2013

An international overview of the extent and type of ecological restoration can offer new perspectives for understanding, planning, and implementation. The Nordic countries, with a great range of natural conditions but historically similar social and political structures, provide an opportunity to compare restoration approaches and efforts across borders. The aim of this study was to explore variation in ecological restoration using the Nordic countries as an example. We used recent national assessments and expert evaluations of ecological restoration. Restoration efforts differed among countries: forest and peatland restoration was most common in Finland, freshwater restoration was most common in Sweden, restoration of natural heathlands and grasslands was most common in Iceland, restoration of natural and semi-cultural heathlands was most common in Norway, and restoration of cultural ecosystems, mainly abandoned agricultural land, was most common in Denmark. Ecological restoration currently does not occur on the Faroe Islands. Economic incentives influence ecological restoration and depend on laws and policies in each country. Our analyses suggest that habitat types determine the methods of ecological restoration, whereas socio-economic drivers are more important for the decisions concerning the timing and location of restoration. To improve the understanding, planning, and implementation of ecological restoration, we advocate increased cooperation and knowledge sharing across disciplines and among countries, both in the Nordic countries and internationally. An obvious advantage of such cooperation is that a wider range of experiences from different habitats and different socio-economic conditions becomes available and thus provides a more solid basis for developing practical solutions for restoration methods and policies. © 2013 by the author(s).


Marteinsdottir B.,University of Iceland | Marteinsdottir B.,University of Stockholm | Thorhallsdottir T.E.,University of Iceland | Svavarsdottir K.,Soil Conservation Service of Iceland
Plant Ecology | Year: 2013

In infertile environments, the spatial scale and distribution of favourable microsites may be an important determinant of vegetation patterns. Such patterns may be persistent although the association and causality may only be detectable during initial establishment. In this study we investigated experimentally how spatial variation on two different scales and species-specific traits affected seedling survival at an early successional site on Skei{eth}arársandur, a 1,000 km2 homogeneous glacial outwash plain in SE-Iceland. Seedlings of eight native species were transplanted into six different micro-topographical combinations: three types of microsites (lee side of small stones and cushion plants, and control), located within two topographical features (shallow depressions and surrounding flats). Seedling survival was then recorded. Only 11 % of transplanted seedlings survived through the second winter, however seedlings that survived past the second growing season were likely to persist. Survival rates varied by species and were positively linked to seed size. Seedling survival was only weakly associated with spatial variation. The strongest association found was that survival was sometimes higher on flats compared to depressions. Sand accumulation in depressions might lower seedling survival there. We conclude that early plant establishment at the site, and the emergent vegetation mosaic, is most likely produced by the interaction of stochastic factors, such as the sand storms that intermittently rage across the plain and species-specific properties like seed size. However, in better-vegetated areas of Skei{eth}arársandur depressions often have higher moss and vascular plant cover than nearby flats, suggesting that moss may control vegetation patterns seen later in succession. © 2013 Springer Science+Business Media Dordrecht.


Jensen E.H.,Icelandic Meteorological Office | Helgason J.K.,Icelandic Meteorological Office | Einarsson S.,Soil Conservation Service of Iceland | Sverrisdottir G.,University of Iceland | And 2 more authors.
Landslide Science and Practice: Spatial Analysis and Modelling | Year: 2013

Historic, post-eruptive debris flows of remobilised volcanic ash are rare in Iceland, being restricted to explosive eruptions. Volcanic ash slurry from the southern slopes of the icecapped Eyjafjallajökull volcano on 19 May 2010 is the first lahar observed in Iceland since the 1947 Hekla eruption. This study focuses on the volume of sediment transported, the size and hydrological behavior of watersheds, and the resulting erosion. The analysis is based on: (1) direct measurements of the 19 May lahar; (2) direct measurements of ash fallout; (3) aerial and ground-based imagery; (4) topographic data from an airborne LIDAR survey; (5) airborne synthetic-aperture radar; and (6) precipitation data. The volume of the lahar in the Svadbælisa channel was estimated at 200,000 m3. This flow originated from crown and flank failures, similar to slab avalanches, with water-saturated, fine-grained ash as the slip surface. Several ash-laden floods occurred in Svadbælisa and neighboring channels during the summer of 2010. None, however, were as saturated as the 19 May lahar. An increased number of small debris flows were also recorded some blocking roads to farms. Precipitation during the summer of 2010 was not higher than average and therefore does not explain this increased erosion. Large quantities of volcanic ash mantle the lower slopes of the icecap. Ash in the ablation zone is expected to be transferred down-slope in the next few years inducing the erosion to the root of the mountain endangering homes and infrastructure. Fieldwork during the summer of 2010 has resulted in a map showing the volume of ash above and below the ablation zone of the main catchments and recorded erosion events. This data was used to assess the hazard and the need for immediate actions. © Springer-Verlag Berlin Heidelberg 2013.


Agustsdottir A.M.,Soil Conservation Service of Iceland
Natural Hazards | Year: 2015

Living in Iceland, a highly volcanically active island with a historical eruption frequency of 20–25 events per 100 years, involves risks from lava, pyroclastic flows, tephra-fall, and floods from glacier/snow-covered volcanoes. Volcanic eruptions can have detrimental effects on human health, societies, and ecosystems. Eruptions in 2010–2011 proved the value of pre-event planning for some natural hazards. An additional focus is needed on pre-disaster mitigation responses for the effects of tephra-fall on vegetation: As outlined under the UNISDR Hyogo/Sendai Framework for Action, healthy ecosystems and environmental management are key actions in disaster risk reduction (DRR). Iceland’s most serious environmental problem is the degraded state of common rangeland in the highlands, where tephra-fall has been catastrophic. Tephra (airborne volcanic material) affects hydrology, air quality, and ecosystems by direct burial or post-eruptive transport, extending its influence far beyond the initial eruption area. Resilience to tephra-related disturbances depends on an ecosystem’s overall health. Tall, vigorous vegetation has greater endurance; its initial survival is more likely, while sheltering minimizes secondary transport and hastens recovery. Areas that are sparsely vegetated and already stressed are more vulnerable; there, tephra remains unstable and can cause further damage. Reclaiming vulnerable land and building healthy ecosystems, as represented by the Hekluskógar project, improve the ability of these areas to endure tephra-fall, increasing their resilience and reducing the associated costs to society. Successful DRR for tephra-fall, through the revegetation of degraded land, will require effective governance, multi-sector coordination, and the alignment of policies on land use, agriculture, natural resource management, and climate change mitigation. © 2015, The Author(s).

Loading Soil Conservation Service of Iceland collaborators
Loading Soil Conservation Service of Iceland collaborators