Sodour Ahrar Shargh Company

Tehrān, Iran

Sodour Ahrar Shargh Company

Tehrān, Iran
SEARCH FILTERS
Time filter
Source Type

Seyfori H.,Arak University | Ghasemi H.A.,Arak University | Hajkhodadadi I.,Arak University | Nazaran M.H.,Sodour Ahrar Shargh Company | Hafizi M.,Sodour Ahrar Shargh Company
Biological Trace Element Research | Year: 2017

The effects of water supplementation of chelated trace minerals (CTM, which is named Bonzaplex designed with chelate compounds technology) on growth performance, apparent total tract digestibility (ATTD) of minerals, and some blood metabolites, TM, and antioxidant enzyme values in African ostriches were investigated from 8 to 12 months of age. A total of 20 8-month-old ostriches (five birds in five replicate pens) was randomly allocated into one of the following four treatments: (1) control (basal diet + tap water), (2) low CTM (basal diet +100 mg/bird/day CTM powder in tap water), (3) medium CTM (basal diet +1 g/bird/day CTM powder in tap water), and (4) high CTM (basal diet +2 g/bird/day CTM powder in tap water). Compared with control, medium CTM improved (P < 0.05) daily weight gain and ATTD of phosphorous, zinc, and copper in 12-month-old ostriches. Furthermore, the feed conversion ratio was lower, and ATTD of magnesium was higher in the medium- and high-CTM groups than that in the control group (P < 0.05). At the end of the trial, ostriches receiving high-CTM treatment exhibited the lower (P < 0.05) serum triglyceride and very low-density lipoprotein cholesterol concentrations and higher copper levels compared to those of the control treatment. Supplementation of higher amounts of CTM (medium and high CTM) also increased the activity of serum superoxide dismutase (P < 0.05). No differences were detected for other blood parameters including glucose, total protein, albumin, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, iron, magnesium, and glutathione peroxidase values. In conclusion, supplementation of CTM at the level of 1 g/bird/day to the drinking water can be recommended for improving growth performance, mineral absorption, and antioxidant status of ostriches fed diets containing the recommended levels of inorganic TM. © 2017 Springer Science+Business Media, LLC


Kalanaky S.,Sodour Ahrar Shargh Company | Kalanaky S.,Shahid Beheshti University of Medical Sciences | Hafizi M.,Sodour Ahrar Shargh Company | Hafizi M.,Stem Cell Technology Research Center | And 9 more authors.
Drug Design, Development and Therapy | Year: 2015

Purpose: In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology. Methods: Human breast adenocarcinoma cell line (MCF-7) and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated. Results: BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected them against oxidative stress. Treatment with nanocomplex increased survival and reduced the tumor size growth in breast cancer-bearing balb/c mice. Conclusion: These results demonstrate that BCc1 has the capacity to be assessed as a new anticancer agent in complementary studies. © 2016 Kalanaky et al.


Mohammadi V.,University of Tehran | Ghazanfari S.,University of Tehran | Mohammadi-Sangcheshmeh A.,University of Tehran | Nazaran M.H.,Sodour Ahrar Shargh Company
British Poultry Science | Year: 2015

Micronutrients, especially zinc, have an important role in normal metabolism and growth of broilers. Using novel technologies helps to synthesise novel zinc complexes to deliver this micronutrient more efficiently. In the present study, the effects of different zinc complexes and nano complexes on broiler performance were compared. Broilers in 6 groups were given basal diet (without zinc) and basal diet supplemented with zinc-sulphate, zinc-methionine, zinc-nano-sulphate, zinc-nano-methionine and zinc-nano-max (that was synthesised based on nanochelating technology) at a concentration of 80 mg/kg of diet. At 1–42 d of age, dietary zinc-nano-sulphate supplementation decreased weight gain and feed intake. However, feed conversion ratio was not influenced by treatments. Carcass yield (%) of birds in the zinc-nano-sulphate and control groups were dramatically reduced at 42 d of age and abdominal fat (%) increased in these groups. Relative to the control group, the antibody titre, spleen and bursa of Fabricius (%) were significantly higher in groups supplemented with zinc. Heterophil (%) was also significantly higher in the zinc-nano-methionine group in blood on d 42 compared to the control, zinc-sulphate and zinc-nano-sulphate. Compared to the controls, the mean malondialdehyde content in thigh tissue was significantly reduced in groups supplemented with zinc at the time 0, 50, 100 and 150 min after oxidation. Tibia zinc concentration in nanoparticle zinc samples was significantly higher relative to the control and zinc-sulphate groups. Taken together, our data indicate that delivery of zinc in the structure of zinc-nano-methionine and zinc-nano-max at concentrations of 80 mg/kg of diet improves growth performance. However, dietary zinc-nano-sulphate decreased growth performance in broilers. © 2015 British Poultry Science Ltd.


Fakharzadeh S.,Sodour Ahrar Shargh Company | Sahraian M.A.,Tehran University of Medical Sciences | Hafizi M.,Sodour Ahrar Shargh Company | Kalanaky S.,Sodour Ahrar Shargh Company | And 5 more authors.
International Journal of Nanomedicine | Year: 2014

Purpose: Currently approved therapies for multiple sclerosis (MS) at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology. Materials and methods: MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2)-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1-7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50). Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively. Results: The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1-7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic behavior and improved the disabling features of experimental autoimmune encephalomyelitis, which was confirmed by decreased clinical scores versus increased body mass and 100% survival probability. It didnot cause any adverse effects on hemoglobin or red blood cell count. Histopathological studies showed no neural loss or lymphocyte infiltration in MSc1-treated mice, while the hepatic iron content was also normal. Conclusion: These results demonstrate that MSc1 could be a promising beneficial novel agent and has the capacity to be evaluated in further studies. © 2014 Fakharzadeh et al.


Maghsoudi A.,Sodour Ahrar Shargh Company | Maghsoudi A.,University of Tehran | Fakharzadeh S.,Sodour Ahrar Shargh Company | Hafizi M.,Sodour Ahrar Shargh Company | And 7 more authors.
Apoptosis | Year: 2015

Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results. © 2014 Springer Science+Business Media New York.


Fakharzadeh S.,Sodour Ahrar Shargh Company | Kalanaky S.,Sodour Ahrar Shargh Company | Kalanaky S.,Shahid Beheshti University of Medical Sciences | Hafizi M.,Sodour Ahrar Shargh Company | And 11 more authors.
Vaccine | Year: 2013

Prevention of hepatitis B requires a vaccine that stimulates the humoral and cellular immune responses in a balanced manner, particularly those associated with Th1 and cytotoxic T cells. Alum adjuvant is currently used in the hepatitis B vaccine formulations but it lacks the efficiency of establishing such immune responses. Therefore, for accessing a suitable vaccine to prevent this fatal disease, it is essential to design and construct a new adjuvant which can overcome the limitations of the alum adjuvant and can stimulate a strong Th1 response as used along with it. In the present study, the adjuvant effect of Hep-c, the first nano-complex which was synthesized by nanochelating technology to improve the immunogenicity of the vaccine against hepatitis B, had been evaluated. Female Balb/c mice were divided into 7 groups and were injected with 10 μg/ml of the hepatitis B vaccine and different doses of Hep-c for 3 times. Groups merely treated with the vaccine, Hep-c or phosphate buffered solution were used as control. Total specific antibody, IgG1, IgG2a, IgG2b, IgM, interleukin-4 (IL-4) and interferon-gamma (IFN-γ) levels were examined by the ELISA method. The proliferative response of the splenocytes was evaluated using bromodeoxyuridine assay. Results showed that immunization with hepatitis B vaccine and Hep-c increased the lymphocyte proliferation and specific IgM and IgG2a compared to the hepatitis B vaccine immunized group. Also, this nano-complex significantly increased the IFN-γ and IL-4 cytokine levels compared to the hepatitis B vaccine immunized group. Our findings show that Hep-c can not only preserve the alum capacity to effectively stimulate production of the antibodies but also cover its inefficiency in inducing Th1 response and prompting cellular immunity. Thus, by boosting the performance of the hepatitis B vaccine, it seemed that this nano-adjuvant has the suitable potential to be used in the commercial HBS vaccine formulation. © 2013 Elsevier Ltd.


PubMed | Sodour Ahrar Shargh Company, Tehran University of Medical Sciences and Health science Center
Type: | Journal: International journal of nanomedicine | Year: 2014

Currently approved therapies for multiple sclerosis (MS) at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology.MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2)-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1-7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50). Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively.The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1-7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic behavior and improved the disabling features of experimental autoimmune encephalomyelitis, which was confirmed by decreased clinical scores versus increased body mass and 100% survival probability. It did not cause any adverse effects on hemoglobin or red blood cell count. Histopathological studies showed no neural loss or lymphocyte infiltration in MSc1-treated mice, while the hepatic iron content was also normal.These results demonstrate that MSc1 could be a promising beneficial novel agent and has the capacity to be evaluated in further studies.


PubMed | Sodour Ahrar Shargh Company, Tehran University of Medical Sciences, Kerman Medical University and University of Tehran
Type: Journal Article | Journal: International journal of hematology | Year: 2016

Iron chelation therapy is an effective approach to the treatment of iron overload conditions, in which iron builds up to toxic levels in the body and may cause organ damage. Treatments using deferoxamine, deferasirox and deferiprone have been introduced and despite their disadvantages, they remain the first-line therapeutics in iron chelation therapy. Our study aimed to compare the effectiveness of the iron chelation agent TLc-A, a nano chelator synthetized based on the novel nanochelating technology, with deferoxamine. We found that TLc-A reduced iron overload in Caco2 cell line more efficiently than deferoxamine. In rats with iron overload, very low concentrations of TLc-A lowered serum iron level after only three injections of the nanochelator, while deferoxamine was unable to reduce iron level after the same number of injections. Compared with deferoxamine, TLc-A significantly increased urinary iron excretion and reduced hepatic iron content. The toxicity study showed that the intraperitoneal median lethal dose for TLc-A was at least two times higher than that for deferoxamine. In conclusion, our in vitro and in vivo studies indicate that the novel nano chelator compound, TLc-A, offers superior performance in iron reduction than the commercially available and widely used deferoxamine.


PubMed | Sodour Ahrar Shargh Company, Tarbiat Modares University, Tehran University of Medical Sciences and Shahid Beheshti University of Medical Sciences
Type: | Journal: Drug design, development and therapy | Year: 2016

In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology.Human breast adenocarcinoma cell line (MCF-7) and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated.BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected them against oxidative stress. Treatment with nanocomplex increased survival and reduced the tumor size growth in breast cancer-bearing balb/c mice.These results demonstrate that BCc1 has the capacity to be assessed as a new anticancer agent in complementary studies.


PubMed | Sodour Ahrar Shargh Company, Tarbiat Modares University and Stem Cell Technology Research Center
Type: | Journal: Stem cell research & therapy | Year: 2015

Human mesenchymal stem cells (hMSCs) have been approved for therapeutic applications. Despite the advances in this field, in vitro approaches are still required to improve the essential indices that would pave the way to a bright horizon for an efficient transplantation in the future. Nanotechnology could help to improve these approaches. Studies signified the important role of iron in stem cell metabolism and efficiency of copper chelation application for stem cell expansionFor the first time, based on novel Nanochelating technology, we design an iron containing copper chelator nano complex, GFc7 and examined on hMSCs during in vitro expansion. In this study, the hMSCs were isolated, characterized and expanded in vitro in two media (with or without GFc7). Then proliferation, cell viability, cell cycle analysis, surface markers, HLADR, pluripotency genes expression, homing and antioxidative defense at genes and protein expression were investigated. Also we analyzed the spontaneous differentiation and examined osteogenic and lipogenic differentiation.GFc7 affected the expression of key genes, improving both the stemness and fitness of the cells in a precise and balanced manner. We observed significant increases in cell proliferation, enhanced expression of pluripotency genes and homing markers, improved antioxidative defense, repression of genes involved in spontaneous differentiation and exposing the hMSCs to differentiation medium indicated that pretreatment with GFc7 increased the quality and rate of differentiation.Thus, GFc7 appears to be a potential new supplement for cell culture medium for increasing the efficiency of transplantation.

Loading Sodour Ahrar Shargh Company collaborators
Loading Sodour Ahrar Shargh Company collaborators