Entity

Time filter

Source Type


Kargin A.V.,RAS Institute of Geology and Mineralogy | Sazonova L.V.,RAS Institute of Geology and Mineralogy | Sazonova L.V.,Moscow State University | Nosova A.A.,RAS Institute of Geology and Mineralogy | And 4 more authors.
Geoscience Frontiers | Year: 2016

The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk Diamond Province, Russia) was studied. Based on petrographic characteristics, the peridotite xenolith reflects a sheared peridotite. The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages: (1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains (Gar1) with sinusoidal rare earth elements (REE) chondrite C1 normalized patterns; (2) a neoblastic olivine and orthopyroxene assemblage; (3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones (Gar2). Major and trace element compositions of olivine, orthopyroxene, clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent. The nature of the metasomatic agent was estimated based on high field strength elements (HFSE) composition of olivine neoblasts, the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene. All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt. © 2016 China University of Geosciences (Beijing) and Peking University. Source


Castillo-Oliver M.,University of Barcelona | Castillo-Oliver M.,Macquarie University | Gali S.,University of Barcelona | Melgarejo J.C.,University of Barcelona | And 5 more authors.
Chemical Geology | Year: 2016

Perovskite (CaTiO3) has become a very useful mineral for dating kimberlite eruptions, as well as for constraining the compositional evolution of a kimberlitic magma and its source. Despite the undeniable potential of such an approach, no similar study had been done in Angola, the fourth largest diamond producer in Africa. Here we present the first work of in situ U-Pb geochronology and Sr-Nd isotope analyses of perovskite in six Angolan kimberlites, supported by a detailed petrographic and geochemical study of their perovskite populations. Four types of perovskite were identified, differing in texture, major- and trace-element composition, zoning patterns, type of alteration and the presence or absence of inclusions. Primary groundmass perovskite is classified either as anhedral, Na-, Nb- and LREE-poor perovskite (Ia); or euhedral, strongly zoned, Na-, Nb- and LREE-rich perovskite (Ib). Secondary perovskite occurs as reaction rims on ilmenite (IIa) or as high Nb (up to 10.6 wt% Nb2O5) perovskite rims on primary perovskite (IIb). The occurrence of these four types within the Mulepe kimberlites is interpreted as an evidence of a complex, multi-stage process that involved mingling of compositionally different melts.U-Pb dating of these perovskites yielded Lower Cretaceous ages for four of the studied kimberlites: Mulepe 1 (116.2 ± 6.5 Ma), Mulepe 2 (123.0 ± 3.6 Ma), Calonda (119.5 ± 4.3 Ma) and Cat115 (133 ± 10 Ma). Kimberlite magmatism occurred in NE Angola likely due to reactivation of deep-seated translithospheric faults (>. 300 km) during the break-up of Gondwana. Sr-Nd isotope analyses of four of these kimberlites indicate that they are Group I kimberlites, which is consistent with the petrological observations. © 2016 Elsevier B.V. Source


Robles-Cruz S.E.,University of Barcelona | Escayola M.,University of Buenos Aires | Jackson S.,Geological Survey of Canada | Gali S.,University of Barcelona | And 4 more authors.
Chemical Geology | Year: 2012

We present the first age determinations of zircon from the diamondiferous Catoca kimberlite in northeastern Angola, the fourth largest kimberlite body in the world. The U-Pb ages were obtained using a Sensitive High Resolution Ion Microprobe II (SHRIMP II) on zircon crystals derived from tuffisitic kimberlite rocks and heavy-mineral concentrates from the Catoca kimberlite. The SHRIMP results define a single weighted mean age of 117.9. ± 0.7 Ma (Mean square weighted deviation MSWD = 1.3). More than 90% of the results indicate a single age population. There is no evidence for variable ages within single crystals, and no diffusional profiles are preserved. These data are interpreted as the maximum age of the kimberlite eruption at Catoca. The U/Th values suggest at least two different sources of zircon crystals. These different populations may reflect different sources of kimberlitic magma, with some of the grains produced in U- and Th-enriched metasomatized mantle units. This idea is consistent with the two populations of zircon identified in this study. One population originated from a depleted mantle source with low total REE (less than 25. ppm), and the other was derived from an enriched source, likely from the mantle or a carbonatite-like melt with high total REE (up to 123. ppm).The tectonic setting of northeastern Angola is influenced by the opening of the south Atlantic, which reactivated deep NE-SW-trending faults during the early Cretaceous. The eruption of the Catoca kimberlite can be correlated with these regional tectonic events. The Calonda Formation (Albian-Cenomanian age) is the earliest sedimentary unit that incorporates eroded material derived from the diamondiferous kimberlites. Thus, the age of the Catoca kimberlite eruption is restricted to the time between the middle of the Aptian and the Albian. The new interpretation will be an important guide in future exploration for diamonds because it provides precise data on the age of a diamond-bearing kimberlite pulse in Angola. © 2012 Elsevier B.V. Source


Pervov V.A.,Sociedade Mineira de Catoca | Somov S.V.,Sociedade Mineira de Catoca | Korshunov A.V.,Sociedade Mineira de Catoca | Dulapchii E.V.,Sociedade Mineira de Catoca | Felix J.T.,Sociedade Mineira de Catoca
Geology of Ore Deposits | Year: 2011

The Catoca kimberlite pipe is among the world's largest primary diamond deposits. The Catoca volcanic edifice is only slightly eroded. Kimberlitic rocks of various facies compose a crater of about 1 km in diameter and a diatreme. The structure of the pipe and mining conditions of the deposit are complicated by intense intrapipe tectonic processes related to large-amplitude subsidence. Based on geological data, we propose a structural model of the deposit and a paleovolcanological model of the Catoca pipe formed during a full cycle beginning with a stage of active volcanism and completed by stages of gradually waning volcanic activity and sedimentation. It is suggested that the banded tuffisitic kimberlite of the crater zone was deposited at the stage of active volcanic eruption from specific pyroclastic suspension as a low-viscosity mixture of crystals and aqueous sol rich in serpentine. © 2011 Pleiades Publishing, Ltd. Source

Discover hidden collaborations