Time filter

Source Type

Yang Q.-C.,Max Planck Institute for Chemistry | Jochum K.P.,Max Planck Institute for Chemistry | Stoll B.,Max Planck Institute for Chemistry | Weis U.,Max Planck Institute for Chemistry | And 5 more authors.
Geostandards and Geoanalytical Research | Year: 2012

To test whether the silicate reference glasses BAM-S005-A and BAM-S005-B from BAM (The Federal Institute for Materials Research and Testing, Germany) are suitable materials for microanalysis, we investigated the homogeneity of these reference glasses using the microanalytical techniques EPMA, LA-ICP-MS and SIMS. Our study indicated that all major and most trace elements are homogeneously distributed at micrometre sampling scale in both types of glass. However, some trace elements (e.g., Cs, Cl, Cr, Mo and Ni) seem to be inhomogeneously distributed. We also determined the composition of BAM-S005-A and BAM-S005-B. The EPMA data of major elements confirmed the information values specified by the certificate. With the exception of Sr, Ba, Ce and Pb, our trace element data by LA-ICP-MS were also in agreement with the certified values within the stated uncertainty limits. The reasons for the discrepancy in these four elements are still unclear. In addition, we report new data for twenty-two further trace elements, for which the concentrations were not certified. Based on our investigation, we suggest that both of these materials are suitable for many microanalytical applications. © 2012 The Authors. Geostandards and Geoanalytical Research © 2012 International Association of Geoanalysts.

Kamenetsky V.S.,University of Tasmania | Kamenetsky V.S.,University of Bonn | Maas R.,University of Melbourne | Fonseca R.O.C.,University of Bonn | And 9 more authors.
Geology | Year: 2013

The origin of vast accumulations of nickel and platinum in some continental magmatic rocks is still enigmatic, but ultimately linked to silicate-sulfide liquid immiscibility. The exact composition of pristine sulfide melts has proved extremely difficult to document and understand, largely because of the ephemeral, reactive qualities and small quantities of such melts. Here we report the discovery of Fe-Ni sulfide melt globules highly enriched in noble metals (Pt, Pd, Au; 120 ppm total platinum group elements [PGE]) within an unusual high-Mg andesitic glass (8.2 wt% MgO, 57.3 wt% SiO2) dredged from the southern Mid-Atlantic Ridge, near the Bouvet triple junction. The composition of this glass indicates derivation of its parental silicate melt from a garnet pyroxenite mantle source with pronounced "continental" isotopic (Pb, Sr, Nd, Hf, Os, O) signatures. We infer that the chemical properties of this high-temperature (1250 °C) melt, notably high SiO2 and Ni (310 ppm) contents, promoted sulfide saturation at low pressures in a purely oceanic setting, and propose that this unique example, with its likely origin in the continental lithospheric mantle, may be a useful analogue for incipient Ni-PGE-sulfide melt generation and magmatic PGE enrichment. © 2013 Geological Society of America.

Zedgenizov D.,Novosibirsk State University | Rubatto D.,Australian National University | Rubatto D.,University of Bern | Shatsky V.,Novosibirsk State University | And 2 more authors.
Chemical Geology | Year: 2016

Diamonds of eclogitic assemblages are dominant in the placer diamond deposits of the northeastern Siberian platform. In this study we present new trace elements and stable isotopes (δ13C and δ18O) data for alluvial diamonds and their garnet inclusions from this locality. Cr-rich garnets of peridotitic affinity in the studied diamonds have a narrow range of δ18O values from 5.7‰ to 6.2‰, which is largely overlapping with the accepted mantle range. This narrow range suggests that the garnet inclusions showing different REE patterns and little variations in oxygen isotopes may have formed by different processes involving fluid/melts that, however, were in oxygen isotopic equilibrium with the mantle. The trace element composition of the eclogitic garnet inclusions supports a crustal origin for at least the high-Ca garnets, which show flat HREE patterns and in some cases a positive Eu-anomaly. High-Ca eclogitic garnets generally show heavier oxygen isotope compositions (δ18O 6.5-9.6‰) than what is observed in low-Ca garnets (δ18O 5.7-7.4‰). The variability in oxygen isotopes and trace elements is suggested to be inherited from contrasting crustal protoliths. The relationship between the high δ18O values of inclusions and the low δ13C values of the host diamonds implies that the high-Ca garnet inclusions were derived from intensely hydrated (e.g., δ18O >7‰) and typically oxidised basaltic rock close to the seawater interface, and that the carbon for diamonds was closely associated with this protolith. © 2015 Published by Elsevier B.V.

Discover hidden collaborations