Entity

Time filter

Source Type


Semple H.A.,Alberta Innovates Technology Futures | Sloley B.D.,Phytovox Inc. | Cabanillas J.,Sabell Corporation | Chiu A.,Snyder Institute for Chronic Diseases | And 2 more authors.
Journal of Complementary and Integrative Medicine | Year: 2016

Background: The purpose of these studies was to determine the safety of a botanical treatment for supporting healthy liver function developed in Peru. The formulation, A4+, contains extracts of Curcuma longa L. rhizome (A4R), Cordia lutea Lam. flower (A4F) and Annona muricata L. leaf (A4L). The tests were used to support an application for a non-traditional Natural Health Product Licence from the Natural Health Product Directorate of Health Canada and future clinical trials. Methods: Besides reviewing the scientific and clinical information from Peru on the ingredients and conducting an initial Ames test for mutagenicity, we analysed A4+ for its chemical profile and tested genotoxicity (micronucleus test) and general toxicity (28-day repeated dose). Results: A4+ and extracts from the three plants provided distinctive chemical fingerprints. A4L contained acetogenins, requiring a second chromatographic method to produce a specific fingerprint. The Ames test proved positive at the highest concentration (5,000μg/mL) but A4+ showed no evidence of genotoxicity in the more specific mouse micronucleus test. The 28-day repeated dose (general toxicity) study in rats showed no toxicity at 2,000mg/kg. Conclusions: We conclude that under the conditions of these studies, A4+ shows no evidence of toxicity at the levels indicated. A no observed adverse effect level (NOAEL) of 2,000mg/kg was assigned. © 2016 by De Gruyter. Source


Gauvreau G.M.,McMaster University | O'Byrne P.M.,McMaster University | Boulet L.-P.,Laval University | Wang Y.,Amgen Inc. | And 12 more authors.
New England Journal of Medicine | Year: 2014

BACKGROUND: Thymic stromal lymphopoietin (TSLP) is an epithelial-cell- derived cytokine that may be important in initiating allergic inflammation. AMG 157 is a human anti-TSLP monoclonal immunoglobulin G2λ that binds human TSLP and prevents receptor interaction. METHODS: In this double-blind, placebo-controlled study, we randomly assigned 31 patients with mild allergic asthma to receive three monthly doses of AMG 157 (700 mg) or placebo intravenously. We conducted allergen challenges on days 42 and 84 to evaluate the effect of AMG 157 in reducing the maximum percentage decrease in the forced expiratory volume in 1 second (FEV1). We also measured the fraction of nitric oxide in exhaled air, blood and sputum eosinophils, and airway hyperresponsiveness. The primary end point was the late asthmatic response, as measured 3 to 7 hours after the allergen challenge. RESULTS: AMG 157 attenuated most measures of allergen-induced early and late asthmatic responses. The maximum percentage decrease in the FEV1 during the late response was 34.0% smaller in the AMG-157 group than in the placebo group on day 42 (P = 0.09) and 45.9% smaller on day 84 (P = 0.02). In addition, patients receiving AMG 157 had significant decreases in levels of blood and sputum eosinophils before and after the allergen challenge and in the fraction of exhaled nitric oxide. There were 15 adverse events in the AMG-157 group, as compared with 12 in the placebo group; there were no serious adverse events. CONCLUSIONS: Treatment with AMG 157 reduced allergen-induced bronchoconstriction and indexes of airway inflammation before and after allergen challenge. These findings are consistent with a key role for TSLP in allergen-induced airway responses and persistent airway inflammation in patients with allergic asthma. Whether anti-TSLP therapeutics will have clinical value cannot be determined from these data. Copyright © 2014 Massachusetts Medical Society. Source


Wong H.,University of Calgary | Eso K.,University of Calgary | Ip A.,University of Calgary | Jones J.,University of Calgary | And 14 more authors.
Systematic Reviews | Year: 2015

Background: Though often used to control outbreaks, the efficacy of ward closure is unclear. This systematic review sought to identify studies defining and describing ward closure in outbreak control and to determine impact of ward closure as an intervention on outbreak containment. Methods: We searched these databases with no language restrictions: MEDLINE, 1946 to 7 July 2014; EMBASE, 1974 to 7 July 2014; CINAHL, 1937 to 8 July 2014; and Cochrane Database of Systematic Reviews, 2005 to May 2014. We also searched the following: IndMED; LILACS; reference lists from retrieved articles; conference proceedings; and websites of the CDCP, the ICID, and the WHO. We included studies of patients hospitalized in acute care facilities; used ward closure as a control measure; used other control measures; and discussed control of the outbreak(s) under investigation. A component approach was used to assess study quality. Results: We included 97 English and non-English observational studies. None included a controlled comparison between ward closure and other interventions. We found that ward closure was often used as part of a bundle of interventions but could not determine its direct impact separate from all the other interventions whether used in parallel or in sequence with other interventions. We also found no universal definition of ward closure which was widely accepted. Conclusions: With no published controlled studies identified, ward closure for control of outbreaks remains an intervention that is not evidence based and healthcare personnel will need to continue to balance the competing risks associated with its use, taking into consideration the nature of the outbreak, the type of pathogen and its virulence, mode of transmission, and the setting in which it occurs. Our review has identified a major research gap in this area. © 2015 Wong et al. Source


Liao S.,Snyder Institute for Chronic Diseases | Liao S.,University of Calgary | Von Der Weid P.-Y.,Snyder Institute for Chronic Diseases | Von Der Weid P.-Y.,University of Calgary
Angiogenesis | Year: 2014

The lymphatic system is intimately linked to tissue fluid homeostasis and immune cell trafficking. These functions are paramount in the establishment and development of an inflammatory response. In the past decade, an increasing number of reports has revealed that marked changes, such as lymphangiogenesis and lymphatic contractile dysfunction occur in both vascular and nodal parts of the lymphatic system during inflammation, as well as other disease processes. This review provides a critical update on the role of the lymphatic system in disease process such as chronic inflammation and cancer and examines the changes in lymphatic functions the diseases cause and the influence these changes have on the progression of the diseases. © 2014 Springer Science+Business Media Dordrecht. Source


Liao S.,University of Calgary | Liao S.,Snyder Institute for Chronic Diseases | von der Weid P.Y.,University of Calgary | von der Weid P.Y.,Snyder Institute for Chronic Diseases
Seminars in Cell and Developmental Biology | Year: 2015

Lymphatic vessels are well known to participate in the immune response by providing the structural and functional support for the delivery of antigens and antigen presenting cells to draining lymph nodes. Recent advances have improved our understanding of how the lymphatic system works and how it participates to the development of immune responses. New findings suggest that the lymphatic system may control the ultimate immune response through a number of ways which may include guiding antigen/dendritic cells (DC) entry into initial lymphatics at the periphery; promoting antigen/DC trafficking through afferent lymphatic vessels by actively facilitating lymph and cell movement; enabling antigen presentation in lymph nodes via a network of lymphatic endothelial cells and lymph node stroma cell and finally by direct lymphocytes exit from lymph nodes. The same mechanisms are likely also important to maintain peripheral tolerance. In this review we will discuss how the morphology and gene expression profile of the lymphatic endothelial cells in lymphatic vessels and lymph nodes provides a highly efficient pathway to initiate immune responses. The fundamental understanding of how lymphatic system participates in immune regulation will guide the research on lymphatic function in various diseases. © 2014 Elsevier Ltd. Source

Discover hidden collaborations