Seoul, South Korea
Seoul, South Korea

Time filter

Source Type

Taye M.,Seoul National University | Taye M.,Bahir Dar University | Kim J.,Human Genome Research Institutes | Yoon S.H.,Seoul National University | And 14 more authors.
BMC Genetics | Year: 2017

Background: Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds. Here, we identified meat quality related gene regions that are positively selected in Ankole (Sanga) cattle breeds as compared to indicus (Boran, Ogaden, and Kenana) breeds using cross-population (XP-EHH and XP-CLR) statistical methods. Results: We identified 238 (XP-EHH) and 213 (XP-CLR) positively selected genes, of which 97 were detected from both statistics. Among the genes obtained, we primarily reported those involved in different biological process and pathways associated with meat quality traits. Genes (CAPZB, COL9A2, PDGFRA, MAP3K5, ZNF410, and PKM2) involved in muscle structure and metabolism affect meat tenderness. Genes (PLA2G2A, PARK2, ZNF410, MAP2K3, PLCD3, PLCD1, and ROCK1) related to intramuscular fat (IMF) are involved in adipose metabolism and adipogenesis. MB and SLC48A1 affect meat color. In addition, we identified genes (TIMP2, PKM2, PRKG1, MAP3K5, and ATP8A1) related to feeding efficiency. Among the enriched Gene Ontology Biological Process (GO BP) terms, actin cytoskeleton organization, actin filament-based process, and protein ubiquitination are associated with meat tenderness whereas cellular component organization, negative regulation of actin filament depolymerization and negative regulation of protein complex disassembly are involved in adipocyte regulation. The MAPK pathway is responsible for cell proliferation and plays an important role in hyperplastic growth, which has a positive effect on meat tenderness. Conclusion: Results revealed several candidate genes positively selected in Ankole cattle in relation to meat quality characteristics. The genes identified are involved in muscle structure and metabolism, and adipose metabolism and adipogenesis. These genes help in the understanding of the biological mechanisms controlling beef quality characteristics in African Ankole cattle. These results provide a basis for further research on the genomic characteristics of Ankole and other Sanga cattle breeds for quality beef. © 2017 The Author(s).


Kim K.,Seoul National University | Kwak W.,SNU Research Park | Kwak W.,Seoul National University | Sung S.-S.,SNU Research Park | And 5 more authors.
Genes and Genomics | Year: 2015

Korean native cattle, known as Hanwoo, have been raised in the Korean Peninsula since 2000 B.C. for use as a draft animal. However, Hanwoo now have an important position in the Korean livestock industry as a meat source. Therefore, the breeding and selection of Hanwoo are crucial for the industry. Although many researchers have studied the genetic architecture of Hanwoo, no well-established Hanwoo-related databases exist. In order to better understand the genetic contents of Hanwoo, an integrated database is necessary. We constructed a genetic variants database including annotation information. HanwooGDB (http://hanwoogdb.snu.ac.kr) provides genetic variants (SNPs, INDELs, CNVs) in the Hanwoo genome produced by Next Generation Sequencing data collected from 23 cattle. The identified SNPs were integrated with SNP chip data and annotation information for checking the concordance of position of each SNP and inferring functional aspects. This database provides browsers to understand and visualize the comprehensive information of these variants and allows users to download data according to their preference from this database without limitation. This database will contribute to genetic research and development of Hanwoo breeding strategies. © 2014, The Genetics Society of Korea and Springer-Science and Media.


Jeong H.,Urbana University | Kim K.,Seoul National University | Kim K.,SNU Research Park | Caetano-Anolles K.,Seoul National University | And 6 more authors.
Scientific Reports | Year: 2016

Chicken, Gallus gallus, is a valuable species both as a food source and as a model organism for scientific research. Here, we sequenced the genome of Gyeongbuk Araucana, a rare chicken breed with unique phenotypic characteristics including flight ability, large body size, and laying blue-shelled eggs, to identify its genomic features. We generated genomes of Gyeongbuk Araucana, Leghorn, and Korean Native Chicken at a total of 33.5, 35.82, and 33.23 coverage depth, respectively. Along with the genomes of 12 Chinese breeds, we identified genomic variants of 16.3 million SNVs and 2.3 million InDels in mapped regions. Additionally, through assembly of unmapped reads and selective sweep, we identified candidate genes that fall into heart, vasculature and muscle development and body growth categories, which provided insight into Gyeongbuk Araucanaâ €™ s phenotypic traits. Finally, genetic variation based on the transposable element insertion pattern was investigated to elucidate the features of transposable elements related to blue egg shell formation. This study presents results of the first genomic study on the Gyeongbuk Araucana breed; it has potential to serve as an invaluable resource for future research on the genomic characteristics of this chicken breed as well as others.


Jeong H.,Seoul National University | Song K.-D.,Chonbuk National University | Seo M.,Seoul National University | Caetano-Anolles K.,Urbana University | And 10 more authors.
BMC Genetics | Year: 2015

Background: Natural and artificial selection following domestication has led to the existence of more than a hundred pig breeds, as well as incredible variation in phenotypic traits. Berkshire pigs are regarded as having superior meat quality compared to other breeds. As the meat production industry seeks selective breeding approaches to improve profitable traits such as meat quality, information about genetic determinants of these traits is in high demand. However, most of the studies have been performed using trained sensory panel analysis without investigating the underlying genetic factors. Here we investigate the relationship between genomic composition and this phenotypic trait by scanning for signatures of positive selection in whole-genome sequencing data. Results: We generated genomes of 10 Berkshire pigs at a total of 100.6 coverage depth, using the Illumina Hiseq2000 platform. Along with the genomes of 11 Landrace and 13 Yorkshire pigs, we identified genomic variants of 18.9 million SNVs and 3.4 million Indels in the mapped regions. We identified several associated genes related to lipid metabolism, intramuscular fatty acid deposition, and muscle fiber type which attribute to pork quality (TG, FABP1, AKIRIN2, GLP2R, TGFBR3, JPH3, ICAM2, and ERN1) by applying between population statistical tests (XP-EHH and XP-CLR). A statistical enrichment test was also conducted to detect breed specific genetic variation. In addition, de novo short sequence read assembly strategy identified several candidate genes (SLC25A14, IGF1, PI4KA, CACNA1A) as also contributing to lipid metabolism. Conclusions: Results revealed several candidate genes involved in Berkshire meat quality; most of these genes are involved in lipid metabolism and intramuscular fat deposition. These results can provide a basis for future research on the genomic characteristics of Berkshire pigs. © 2015 Jeong et al.


Kim M.,Yonsei University | Seo H.,Yonsei University | Choi Y.,Yonsei University | Yoo I.,Yonsei University | And 6 more authors.
PLoS ONE | Year: 2015

The uterine endometrium plays a critical role in regulating the estrous cycle and the establishment and maintenance of pregnancy in mammalian species. Many studies have investigated the expression and function of genes in the uterine endometrium, but the global expression pattern of genes and relationships among genes differentially expressed in the uterine endometrium during gestation in pigs remain unclear. Thus, this study investigated global gene expression profiles using microarray in pigs. Diverse transcriptome analyses including clustering, network, and differentially expressed gene (DEG) analyses were performed to detect endometrial gene expression changes during the different gestation stages. In total, 6,991 genes were found to be differentially expressed by comparing genes expressed on day (D) 12 of pregnancy with those on D15, D30, D60, D90 and D114 of pregnancy, and clustering analysis of detected DEGs distinguished 8 clusters. Furthermore, several pregnancy-related hub genes such as ALPPL2, RANBP17, NF1B, SPP1, and CST6 were discovered through network analysis. Finally, detected hub genes were technically validated by quantitative RT-PCR. These results suggest the complex network characteristics involved in uterine endometrial gene expression during pregnancy and indicate that diverse patterns of stage-specific gene expression and network connections may play a critical role in endometrial remodeling and in placental and fetal development to establish and maintenance of pregnancy in pigs. © 2015 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Jeong H.,Seoul National University | Jeong H.,Urbana University | Sung S.,SNU Research Park | Kwon T.,Seoul National University | And 6 more authors.
Nucleic Acids Research | Year: 2016

The HGTree database provides putative genomewide horizontal gene transfer (HGT) information for 2472 completely sequenced prokaryotic genomes. This task is accomplished by reconstructing approximate maximum likelihood phylogenetic trees for each orthologous gene and corresponding 16S rRNA reference species sets and then reconciling the two trees under parsimony framework. The tree reconciliation method is generally considered to be a reliable way to detect HGT events but its practical use has remained limited because the method is computationally intensive and conceptually challenging. In this regard, HGTree (http://hgtree.snu.ac.kr) represents a useful addition to the biological community and enables quick and easy retrieval of information for HGT-acquired genes to better understand microbial taxonomy and evolution. The database is freely available and can be easily scaled and updated to keep pace with the rapid rise in genomic information. © The Author(s) 2015.


PubMed | SNU Research Park, Urbana University, COMSATS Institute of Information Technology and Seoul National University
Type: Journal Article | Journal: Nucleic acids research | Year: 2016

The HGTree database provides putative genome-wide horizontal gene transfer (HGT) information for 2472 completely sequenced prokaryotic genomes. This task is accomplished by reconstructing approximate maximum likelihood phylogenetic trees for each orthologous gene and corresponding 16S rRNA reference species sets and then reconciling the two trees under parsimony framework. The tree reconciliation method is generally considered to be a reliable way to detect HGT events but its practical use has remained limited because the method is computationally intensive and conceptually challenging. In this regard, HGTree (http://hgtree.snu.ac.kr) represents a useful addition to the biological community and enables quick and easy retrieval of information for HGT-acquired genes to better understand microbial taxonomy and evolution. The database is freely available and can be easily scaled and updated to keep pace with the rapid rise in genomic information.


PubMed | Urbana University, Iowa State University, Seoul National University, SNU Research Park and 2 more.
Type: | Journal: BMC genetics | Year: 2015

Natural and artificial selection following domestication has led to the existence of more than a hundred pig breeds, as well as incredible variation in phenotypic traits. Berkshire pigs are regarded as having superior meat quality compared to other breeds. As the meat production industry seeks selective breeding approaches to improve profitable traits such as meat quality, information about genetic determinants of these traits is in high demand. However, most of the studies have been performed using trained sensory panel analysis without investigating the underlying genetic factors. Here we investigate the relationship between genomic composition and this phenotypic trait by scanning for signatures of positive selection in whole-genome sequencing data.We generated genomes of 10 Berkshire pigs at a total of 100.6 coverage depth, using the Illumina Hiseq2000 platform. Along with the genomes of 11 Landrace and 13 Yorkshire pigs, we identified genomic variants of 18.9 million SNVs and 3.4 million Indels in the mapped regions. We identified several associated genes related to lipid metabolism, intramuscular fatty acid deposition, and muscle fiber type which attribute to pork quality (TG, FABP1, AKIRIN2, GLP2R, TGFBR3, JPH3, ICAM2, and ERN1) by applying between population statistical tests (XP-EHH and XP-CLR). A statistical enrichment test was also conducted to detect breed specific genetic variation. In addition, de novo short sequence read assembly strategy identified several candidate genes (SLC25A14, IGF1, PI4KA, CACNA1A) as also contributing to lipid metabolism.Results revealed several candidate genes involved in Berkshire meat quality; most of these genes are involved in lipid metabolism and intramuscular fat deposition. These results can provide a basis for future research on the genomic characteristics of Berkshire pigs.

Loading SNU Research Park collaborators
Loading SNU Research Park collaborators