Time filter

Source Type

Jumabay-Uulu K.,Snow Leopard Foundation in Kyrgyzstan | Wegge P.,Norwegian University of Life Sciences | Mishra C.,Snow Leopard Trust and Nature Conservation Foundation | Sharma K.,Snow Leopard Trust and Nature Conservation Foundation
ORYX | Year: 2014

In the cold and arid mountains of Central Asia, where the diversity and abundance of wild ungulates are generally low, resource partitioning among coexisting carnivores is probably less distinct than in prey-rich areas. Thus, similar-sized carnivores are likely to compete for food. We compared the summer diets of snow leopards Panthera uncia and wolves Canis lupus in Sarychat-Ertash Reserve in the Tien-Shan mountains of Kyrgyzstan, based on analysis of genetically confirmed scats. Abundances of the principal prey species, argali Ovis ammon and Siberian ibex Capra sibirica, were estimated from field surveys. The diets consisted of few species, with high interspecific overlap (Pianka's index = 0.91). Argali was the predominant prey, with > 50% frequency of occurrence in both snow leopard and wolf scats. This was followed by Siberian ibex and marmots Marmota baibacina. Being largely unavailable, remains of livestock were not detected in any of the scats. In the snow leopard diet, proportions of argali and ibex were in line with the relative availabilities of these animals in the Reserve. This was in contrast to the diet of wolf, where argali occurred according to availability and ibex was significantly underrepresented. The high diet overlap indicates that the two predators might compete for food when the diversity of profitable, large prey is low. Competition may be more intense in winter, when marmots are not available. Hunting of argali and ibex outside the Reserve may be unsustainable and therefore reduce their abundances over time. This will affect both predators negatively and intensify competition for food. Reduction in ibex populations will directly affect the snow leopard, and the wolf is likely to be indirectly affected as a result of increased snow leopard predation of argali. Copyright © Fauna & Flora International 2013. Source

Namgail T.,Snow Leopard Trust and Nature Conservation Foundation | Namgail T.,Wageningen University | Namgail T.,U.S. Geological Survey | Rawat G.S.,Wildlife Institute of India | And 3 more authors.
Journal of Plant Research | Year: 2012

A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. © 2011 The Author(s). Source

Suryawanshi K.R.,National Center for Biological science | Suryawanshi K.R.,Wildlife Conservation Society | Bhatnagar Y.V.,Snow Leopard Trust and Nature Conservation Foundation | Mishra C.,Snow Leopard Trust and Nature Conservation Foundation
Oecologia | Year: 2010

Many mammalian herbivores show a temporal diet variation between graminoid-dominated and browse-dominated diets. We determined the causes of such a diet shift and its implications for conservation of a medium-sized ungulate-the bharal Pseudois nayaur. Past studies show that the bharal diet is dominated by graminoids (>80%) during summer, but the contribution of graminoids declines to about 50% in winter. We tested the predictions generated by two alternative hypotheses explaining the decline: low graminoid availability during winter causes bharal to include browse in their diet; bharal include browse, with relatively higher nutritional quality, in their diet to compensate for the poor quality of graminoids during winter. We measured winter graminoid availability in areas with no livestock grazing, areas with relatively moderate livestock grazing, and those with intense livestock grazing pressures. The chemical composition of plants contributing to the bharal diet was analysed. The bharal diet was quantified through signs of feeding on vegetation at feeding locations. Population structures of bharal populations were recorded using a total count method. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. The bharal diet was dominated by graminoids (73%) in areas with highest graminoid availability. Graminoid contribution to the bharal diet declined monotonically (50, 36%) with a decline in graminoid availability. Bharal young to female ratio was 3 times higher in areas with high graminoid availability than areas with low graminoid availability. The composition of the bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Our results suggest that bharal include more browse in their diet during winter due to competition from livestock for graminoids. Since livestock grazing reduces graminoid availability, creation of livestock-free areas is necessary for the conservation of grazing species such as the bharal and its predators including the endangered snow leopard in the Trans-Himalaya. © Springer-Verlag 2009. Source

Suryawanshi K.R.,Snow Leopard Trust and Nature Conservation Foundation | Bhatnagar Y.V.,Snow Leopard Trust and Nature Conservation Foundation | Mishra C.,Snow Leopard Trust and Nature Conservation Foundation
Oecologia | Year: 2012

Mountain ungulates around the world have been threatened by illegal hunting, habitat modification, increased livestock grazing, disease and development. Mountain ungulates play an important functional role in grasslands as primary consumers and as prey for wild carnivores, and monitoring of their populations is important for conservation purposes. However, most of the several currently available methods of estimating wild ungulate abundance are either difficult to implement or too expensive for mountainous terrain. A rigorous method of sampling ungulate abundance in mountainous areas that can allow for some measure of sampling error is therefore much needed. To this end, we used a combination of field data and computer simulations to test the critical assumptions associated with double-observer technique based on capture-recapture theory. The technique was modified and adapted to estimate the populations of bharal (Pseudois nayaur) and ibex (Capra sibirica) at five different sites. Conducting the two double-observer surveys simultaneously led to underestimation of the population by 15%. We therefore recommend separating the surveys in space or time. The overall detection probability for the two observers was 0.74 and 0.79. Our surveys estimated mountain ungulate populations (±95% confidence interval) of 735 (±44), 580 (±46), 509 (±53), 184 (±40) and 30 (±14) individuals at the five sites, respectively. A detection probability of 0.75 was found to be sufficient to detect a change of 20% in populations of >420 individuals. Based on these results, we believe that this method is sufficiently precise for scientific and conservation purposes and therefore recommend the use of the double-observer approach (with the two surveys separated in time or space) for the estimation and monitoring of mountain ungulate populations. © 2012 Springer-Verlag. Source

Discover hidden collaborations