Entity

Time filter

Source Type

Moissy-Cramayel, France

Snecma S.A. is a French multinational aircraft and rocket engine manufacturer headquartered in Courcouronnes, France. Alone or in partnership, Snecma designs, develops, produces and markets engines for civil and military aircraft, launch vehicles and satellites. The company also offers a complete range of engine support services to airlines, armed forces and other operators. Snecma is a subsidiary of Safran. Wikipedia.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: AAT.2013.1-3. | Award Amount: 45.04M | Year: 2013

The ENOVAL project will provide the next step of engine technologies to achieve and surpass the ACARE 2020 goals on the way towards Flightpath 2050. ENOVAL completes the European 7th Framework Programme (FP7) roadmap of Level 2 aero engine projects. ENOVAL will focus on the low pressure system of ultra-high by-pass ratio propulsion systems (12 < BPR < 20) in conjunction with ultra high overall pressure ratio (50 < OPR < 70) to provide significant reductions in CO2 emissions in terms of fuel burn (-3% to -5%) and engine noise (-1.3 ENPdB). ENOVAL will focus on ducted geared and non-geared turbofan engines, which are amongst the best candidates for the next generation of short/medium range and long range commercial aircraft applications with an entry into service date of 2025 onward. The expected fan diameter increase of 20 to 35% (vs. year 2000 reference engine) is significant and can be accommodated within the limits of a conventional aircraft configuration. It is in line with the roadmap of the Strategic Research and Innovation Agenda for 2020 to have the technologies ready for Optimised conventional aircraft and engines using best fuel efficiency and noise control technologies, where UHBR propulsion systems are expressively named as a key technology. ENOVAL will be established in a consistent series of Level 2 projects in conjunction with LEMCOTEC for core engine technologies, E-BREAK for system technologies for enabling ultra high OPR engines, and OPENAIR for noise reduction technologies. Finally, ENOVAL will prepare the way towards maturing the technology and preparing industrialisation in coordination with past and existing aero-engine initiatives in Europe at FP7 and national levels.


A method is provided for determining at least one faulty piece of equipment from amongst a plurality of pieces of equipment of an aircraft. A system is also provided that implements the method. The method comprises the steps of reading a plurality of predetermined parameters for monitoring said equipment; defining a list of symptoms associated with said parameters read, using a predetermined correspondence table; attributing a value associated with each symptom according to the parameters read, which value is selected from amongst a predetermined list of values; evaluating for each piece of equipment an occurrence of one or more fault modes for said piece of equipment on the basis of at least one predetermined truth table which associates a fault mode with each combination of symptom values; and determining at least one faulty piece of equipment from amongst one or more pieces of equipment, of which at least one fault mode is currently occurring, referred to as potentially faulty equipment.


Patent
Snecma | Date: 2015-09-29

A rotating assembly for a turbine engine, comprising a disc having an outer periphery having alternating slots and teeth, blades radially extending from the disc and roots of which are axially engaged in the slots, with spaces called slot cavities being provided between the roots of the blades and the slots, platforms laterally extending from the blades and circumferentially arranged end-to-end, so as to form spaces called inter-blade cavities, and a downstream annular shroud, comprising an outer annular sealing lip opposite the downstream ends of the platforms. The downstream shroud further comprises an intermediate annular sealing lip opposite the downstream faces of the teeth of the disc, radially between the slot cavities and the inter-blade cavities.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: COMPET-09-2014 | Award Amount: 1.01M | Year: 2015

The objective of this proposal is to investigate the necessary demonstration activities in order to mature technologies for nuclear electric propulsion (NEP) systems that is considered one of the key enabler to allow deep exploration and science missions both manned and unmanned. The DEMOCRITOS projects aims to define three Demonstrator Concepts in regards to NEP technologies: 1. Detailed preliminary designs of ground experiments that will allow maturing the necessary technologies in the field of MW level nuclear electric propulsion. The project will investigate the interaction of the major subsystems (thermal, power management, propulsion, structures and conversion) with each other and a (simulated) nuclear core providing high power, in the order of several hundred kilowatts. 2. Nuclear reactor cost studies and simulations to provide feedback to the simulated nuclear core of DEMOCRITOS ground experiments as well as conceptualize the concept of nuclear space reactor and outline the specifications for a Core Demonstrator, including an analysis of the regulatory and safety framework that will be necessary for such a demonstration to take place on the ground. 3. System architecture and robotic studies that will investigate in detail the overall design of a high power nuclear spacecraft, together with a pragmatic strategy for assembly in orbit of such a large structure coupled with a nuclear reactor. Additionally, the project partners will define a programmatic plan, insuring that the demonstrators can be built, tested, and reach the established ambitious objectives, this with a clear organization between international partners and with costs shared in a sustainable way. DEMOCRITOS aims to form a cluster around NEP related technologies by organizing an international workshop and invite external stakeholders to propose ideas for the ground and flight demonstrators or possibly join in the effort to realize the ground demonstrator experiments.


Patent
Snecma | Date: 2015-04-15

The invention relates to a device for locking a nut (

Discover hidden collaborations